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INTERNEURON SUBTYPES ARE DIFFERENTIALLY ALTERED IN 
MALFORMED, EPILEPTOGENIC CORTEX 

 
by Amanda L. George 

 
A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University. 

 
Virginia Commonwealth University, 2008 

 
Director: Kimberle Jacobs, Ph.D. 

Associate Professor, Department of Anatomy and Neurobiology 
 
 
 

The propensity for seizures in patients with epilepsy is due to underlying cortical 

hyperexcitability, the mechanisms for which are poorly understood.  Particularly difficult 

to treat are patients with developmental malformations of cortex.  Using the freeze-lesion 

rat model of one such malformation, polymicrogyria, we identified, in lesioned cortex, 

alterations in specific interneuron subpopulations that may promote hyperexcitability.  

Previous studies demonstrate increased excitatory input to the paramicrogyral region.  An 

increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) 

recorded from pyramidal cells has also been shown.  We report an increase in sEPSCs 

recorded from one subtype of interneuron, the low threshold-spiking interneuron (LTS), 

while sEPSCs in the fast-spiking (FS) interneuron remain unchanged.  Distributed 

equally to pyramidal cells and interneurons, extra excitatory afferents should simply 
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increase overall activity level but maintain the balance of excitation and inhibition.  

Selective changes in one or more interneuron subpopulations could allow inhibition to 

appear unchanged, while permitting problematic alterations in inhibitory circuitry.   

In what appears to be a morphological division of labor, interneurons with 

intralaminar orientations are typically characterized as FS, while intracolumnar 

orientations are associated with LTS cells.  These cells are clearly distinguished by a 

combination of visual identification and electrophysiological and intrinsic properties.  We 

report that these characteristics are unchanged in lesioned cortex, indicating that the 

malformation is not responsible for intrinsic alteration of the cell types.  However, some 

firing properties demonstrate slight differences that may, in cooperation with the altered 

level of input, amplify the pro-epileptogenic changes in circuitry.  Finally, we also report 

that there is anomalous expression of metabotropic glutamate receptors (mGluR) in 

malformed cortex.  Our data show that the expression of mGluR5, normally causing no 

functional response in control cortex, contributes to the activation of interneurons in 

paramicrogyral (PMG) cortex.  These findings provide new insight to the mechanisms of 

cortical hyperexcitability and identify a possible target for future pharmacological 

intervention. 
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Chapter 1 

Introduction to Epilepsy and Interneurons 

 

1.1 Epilepsy 

The earliest known documentation of epilepsy is found in an ancient Babylonian 

medical text, the Sakikku, where it is referred to as the “falling disease” (101).  

Throughout history, similar phrases have been used to describe epilepsy, from ancient 

Chinese and Indian texts to writings from Medieval Europe and the Renaissance.  The 

term “epilepsy” derives from the Greek επιλαµβανειν, or epilamvanein, meaning “to take 

hold of, to seize.”  In the age of Hippocrates and still in some cultures today, people have 

alternately viewed seizures as episodes of demon possession or divine religious 

experience.  Certain that a physiological explanation would unravel the mystery of this 

condition, Hippocrates himself is credited with saying that discovery of the underlying 

cause of epilepsy would eliminate its “sacred” quality (101).  However, it was not until 

the mid-1800s that Hughlings Jackson took the first substantial steps in that direction.  

He, along with Jean-Martin Charcot, Wilder Penfield, Herbert Jasper and Hans Berger 

made significant contributions to the body of knowledge we currently have regarding 

epilepsy.  At this writing, there are explanations for a number of different epilepsies, 

specifically those with genetic or acquired etiologies (39; 120; 147; 248; 309).  Even so, 

there are many patients whose epilepsy is poorly understood and managed (306).  Despite 
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advances in both diagnosis and treatment, there is still much to be learned about epilepsy 

and its underlying mechanisms. 

The syndrome of epilepsy consists of multiple, recurrent seizures that have no 

other medical explanation.  The behavioral manifestations of seizures can vary, but the 

clinical symptoms are all representative of excessive, synchronous neuronal firing.  The 

Commission on Classification and Terminology of the International League Against 

Epilepsy identifies two general seizure categories, partial and generalized (2).  Partial 

seizures are comprised of focal symptoms and are due to abnormal neuronal activity in a 

restricted region of the brain.  Patients with this type of seizure may exhibit characteristic 

motor behaviors or have a specific sensory experience in the absence of the appropriate 

stimulus.  Alternatively, generalized seizures involve both hemispheres and may have a 

more severe presentation, including loss of consciousness and postural muscle tone, often 

resulting in collapse. 

It is difficult to accurately assess the number of patients with epilepsy worldwide, 

particularly in developing countries.  However, the estimated global prevalence of 

epilepsy is 8.2 per 1,000 of the general population (144).  This translates into 

approximately 50 million people worldwide (World Health Organization Website, 

www.who.int/en/).  Extrapolating data from a study in Minnesota, epilepsy affects one to 

three percent of the U.S. population, with ten percent experiencing a seizure at some 

point during their lifetime (145).  The highest incidence of seizures tends to occur at the 

extremes of life, first during the neonatal period and then again after seventy years of age 

(144).  Most studies reveal that males have a higher incidence of unprovoked seizures 
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(144).  There are numerous etiologies for seizures, including tumor, genetic 

predisposition, traumatic brain injury, congenital disease, dysplasia and infectious disease 

of the CNS (34; 39; 161; 194; 227).  However, one study from the early eighties labeled 

two-thirds of epilepsy cases as idiopathic or cryptogenic, as clear identification of an 

underlying cause was not possible (144).  With the development of modern imaging 

techniques, it is now increasingly possible for physicians to recognize that previously 

unrecognized anatomical lesions underlie seizures in a number of these patients (18; 146; 

195; 334). 

 

1.2 Cortical malformations 

Malformation of the cerebral cortex during development is one of the most 

common causes of intractable epilepsy, especially in children (114; 366).  There are 

many different malformations that span a wide range of severities, dependent on how and 

when the malformation arises.  The next two sections review several malformations of 

cortical development and the animal models used to study them.   

 

1.2.1 Clinical aspects and etiologies of cortical malformations 

Errors that occur early in central nervous system (CNS) development may result 

in the generation of too few cells or, with a similar effect, cause too many cells to die.  

When this happens, there are not enough neurons and glia to populate the developing 

cortex.  The result is an underdeveloped brain, along with microcephaly, a condition in 

which the head circumference is smaller than average by more than two standard 
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deviations (20; 140).  Factors that may inhibit brain growth and cause this type of lesion 

include vascular insult, intrauterine infection (cytomegalovirus, rubella, and 

toxoplasmosis), maternal alcohol consumption and other teratogens (3).  Conversely, 

increased proliferation or apoptotic failure can produce a neoplastic lesion, cortical 

dysplasia or hemimegalencephaly (20; 140).  Patients with hemimegalencephaly in 

particular suffer from intractable seizures that start at birth, as well as hemiparesis and 

developmental delay (194). 

Malformations that can be attributed to improper migration rather than faulty 

neuron generation include lissencephaly and heterotopia.  Lissencephaly, or “smooth 

brain” is a condition in which the normal gyri of the cortical surface are absent or 

dramatically decreased in number.  Individuals with lissencephaly exhibit an array of 

neurological deficits, including mental retardation, hypotonia, difficulty feeding and 

epileptic seizures (94; 115).  Intellectual disability in some of these patients may occur, 

secondary to intractable seizure activity (194).  Several genetic mutations are associated 

with lissencephaly, the most well-recognized being those in the DCX (or XLIS) and LIS1 

(or PAFAH1B1) genes (137; 307).  LIS1 encodes a protein subunit associated with 

platelet activating factor acetylhydrolase (151; 275), while DCX encodes a protein that 

may be involved in microtubule assembly and/or function.  The functional correlation 

between abnormalities in these gene products and their respective malformation 

phenotypes is unknown.  Heterotopia, on the other hand, refers to the presence of one or 

more deposits of inappropriately located gray matter, usually within white matter tracts of 

the brain (138; 317).  The major clinical presentation associated with heterotopia includes 
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mild-to-moderate intellectual disability and some form of epilepsy (98; 136).  One study 

showed that eighty percent of patients with periventricular nodular heterotopia presented 

with seizures, the majority of them being intractable (23).  Another variation of this 

malformation, subcortical laminar heterotopia, is associated with the lissencephaly gene 

DCX, but in the more common familial X-linked bilateral periventricular nodular 

heterotopia, mutations in the FLN1 gene are responsible nearly one hundred percent of 

the time (117).  FLN1 encodes a protein important for cell morphology and migration 

(117), so this may provide a logical correlation between protein deficiency and cortical 

malformation.  Heterotopia is one of the malformations more frequently observed in the 

animal models described in the next section. 

Also due to dysfunction of post-neurogenesis development, schizencephaly refers 

to a cleft in the brain that allows aCSF to flow directly from the ventricles through two 

cortical “lips,” into the subarachnoid space (20; 138; 140).  If the “lips” are closed, the 

patient often exhibits hemiparesis or motor delay.  “Open-lipped” schizencephaly more 

commonly results in hydrocephalus or seizures (194).  De novo mutations of the EMX2 

gene have been associated with several cases of schizencephaly, particularly those with 

severe clinical presentation (48).  Almost always, the schizencephalic cleft is bordered by 

one or more areas of polymicrogyria.  Polymicrogyria is a malformation defined by an 

abundance of abnormally small gyri, and as it is the malformation most closely related to 

the experiments described here, it will be discussed in detail in the next section of this 

chapter.  
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1.2.2 Animal models of cortical malformation 

A number of techniques can be used to model in rats the cortical malformations 

described above.  These include, but are not limited to:  genetic mutation (192), 

irradiation (282), exposure to methamphetamine or other chemicals in utero (32; 84; 

297), injection of a toxin (211), direct mechanical damage to the cortex (109), and, as is 

used in these studies, ischemia secondary to freeze probe application (99).  Similar to 

human patients, the type and severity of malformation that occurs during development 

depends on both the timing and nature of the insult (132).  While some models involve a 

loss of cells throughout the cortex due to global damage, the model employed for the 

studies in this body of work involves specific elimination of deep layer neurons in 

somatosensory cortex (99).  Some of the models described here produce spontaneous 

seizures, and all of them demonstrate in vitro hyperexcitability (232).  While they each 

have unique mechanisms that underlie the hyperexcitability, there are shared 

characteristics between them, and it is instructive to compare the mechanisms 

contributing to epileptogenesis from one model to another.     

Three methods of inducing cortical malformation in utero are:   irradiation (282), 

1,2-bis-chloroethyl-nitrosourea (BCNU) injection (32), and methylazoxymethanol 

(MAM) exposure (17).  Each of these reduces cortical thickness and is usually 

accompanied by some type of heterotopia (232).  X-irradiation of embryonic rat pups in 

utero has been used for a number of years to model cortical dysplasia.  These rats have an 

abnormally thin cortex, as well as disruption of the radial glia (282; 283).  The γ-

aminobutyric (GABA)ergic neuronal population is reduced in these animals (284), and 
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reduced excitatory drive onto the existing GABAergic cells in the malformed cortex is 

observed (367).  This suggests that reduced inhibition is a major contributor to the 

hyperexcitability observed in this model.  Injection of MAM also results in a thinning of 

the cortex, and when the injections are given early enough (E24 in ferret), disorganization 

of radial glia is observed (240).  Pyramidal cells located within cortical heterotopias in 

these rats demonstrate excessive bursting behavior and excitability, characteristics that 

promote epileptiform activity (297).  The histological characteristics of the cortex in 

BCNU-exposed pups are similar to those in the MAM model, including disruption of 

radial glia (32).      

Another animal that is used specifically to model heterotopia is the telencephalic 

internal structural heterotopia (TISH) rat.  This malformation is due to a genetic mutation 

and has similarities with the human conditions of double cortex and subcortical band 

heterotopia (192).  Decreased inhibitory synaptic transmission is observed in this model 

and occurs two weeks prior to the onset of seizures (352).  This appears to be due to a 

decreased number of inhibitory afferents, as increasing the probability of release with a 

low Mg2+/high Ca2+ solution fails to “rescue” the lost inhibitory function (352).  A 

concomitant decrease in one specific GABAergic cell population is also seen in this 

model (352).  It is likely that the decreased inhibition promotes epileptogenesis, although 

due to the intervening two week period prior to the onset of seizures, there are likely 

other contributing factors. 

Lastly, microgyria can be modeled in a number of ways.  A light mechanical 

disturbance of the exposed pial surface can cause a microgyral malformation (109), as 
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can exposure to methamphetamine in utero (84).  Two of the more commonly used 

methods of inducing microgyria are the ibotenate injection (211) model and the freeze-

lesion model (99; 156; 157).  Injection of the glutamatergic agonist ibotenic acid shortly 

after birth causes the death of cells in layer V-VI of the developing rodent cortex (211).  

This manipulation produces a small sulcus in the brain, mimicking the human condition 

of polymicrogyria (133; 211).  Hyperexcitability similar to that seen in the human 

condition is observed in cortical areas surrounding the lesion (274).  The freeze-lesion 

model creates a similar malformation and  will be considered at length in the next section.   

 

1.3 Polymicrogyria 

 

1.3.1 Clinical aspects and etiologies of polymicrogyria 

The name “polymicrogyria” describes a malformation that comprises many 

abnormally small gyri on the surface of the brain, giving it an irregular, bumpy 

appearance.  Seizures and mental retardation are observed in most patients with this type 

of malformation (137).  The etiologies of polymicrogyria are varied and include in utero 

ischemic insult (108) or infection (21; 85), as well as a number of genetic mutations 

(137).  Current advances in medical imaging have helped to identify this malformation as 

one of the causative factors for epilepsies previously classified as idiopathic (18; 195; 

334).  However, the epileptogenic zone of this malformation is not always confined to the 

area of the visible anatomical lesion.  Hyperexcitable portions of cortex surround the 

lesion as well, making it difficult to definitively assign boundaries to the “damaged” 
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tissue (70).  The extent of polymicrogyria and the amount of cortex involved can vary 

greatly between individuals, but there is usually a correlation between the size of the 

lesion and the severity of clinical signs and EEG findings (340).   

Some of the more common forms of polymicrogyria have stereotyped anatomical 

presentations, clinical symptoms and known genetic causes.  Bilateral frontal 

polymicrogyria, for example, encompasses practically the entire frontal lobe and causes 

epilepsy, hypotonia, mental retardation and developmental delay in children (135).  

Expanding to the parietal lobe, bilateral frontoparietal polymicrogyria is associated with 

developmental delay, seizures and motor deficits (66; 257). It has a demonstrated 

association with mutations of GPR56, a G-protein coupled receptor that is important for 

protein trafficking (258; 259).  Often, microgyria is observed around the sylvian fissure, 

frequently in both hemispheres.  Bilateral perisylvian polymicrogyria (BPP) causes 

dysarthria, facial diplegia, mental retardation and seizures (134).  Epilepsy of variable 

severity is associated with about sixty percent of these cases (134).  The combination of 

BPP, seizures and oro-motor dysfunction has been termed “congenital bilateral 

perisylvian syndrome,” and clinical data has been collected from patients with this 

condition for over a century (194).  Finally, bilateral generalized polymicrogyria affects 

multiple lobes of the bran, resulting in a severe manifestation of symptoms (67).  Most 

patients with the generalized form suffer from seizures, and virtually all of them have 

some type of cognitive or motor delay (67).  Some patients with seizures secondary to 

polymicrogyria can be treated with currently available anticonvulsants, but others suffer 

intractable seizures, requiring surgical intervention (199). 



www.manaraa.com

 

10

1.3.2 The freeze-lesion model of microgyria 
  

The freeze-lesion model of microgyria was first developed by Dvorak and Feit in 

the late seventies and recapitulates the histopathology of human four-layered 

polymicrogyria (99; 100; 100).  To reproduce this, a freezing probe (-50oC) is placed on 

the skull of a neonatal rat pup, creating an ischemic lesion that kills the neurons present 

in the cortical plate at that time, those comprising layers IV-VI.  After subsequent 

development of the superficial layers is complete, a focal (~1 x 4 mm) microgyral region 

of laminated cortex containing four, instead of six, cortical layers is produced (99; 100).  

The superficial layers of the malformed region are similar to normal neocortical layers I 

and II/III (82; 85; 99).  The third layer of the microgyrus is thin and contains a few cells 

with small somata that are most likely glia (99).  Typically, this cell-sparse third layer 

terminates abruptly at the point of contact between the microgyrus proper and the 

adjacent six-layered cortex (82; 85).  The fourth layer is similar to and often contiguous 

with layer IVb of normal cortex (82; 85; 100).   

Consistent and reproducible evidence of epileptiform activity associated with the 

formation of the induced microgyrus has been demonstrated after postnatal day (P)12 in 

rats (156; 157; 202).  The area of cortex adjacent to the induced malformation has a 

normal, six-layered histological appearance, but that is where hyperexcitability is 

observed, in the form of evoked interictal-like activity (156).  This region is identified as 

the paramicrogyral zone (PMG).  Epileptiform activity in rats that are lesioned in this 

manner is similar in incidence to that of humans with polymicrogyria, about eighty 

percent (19; 157).  
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1.3.2.1 Behavioral effects of the freeze-lesion model, including seizure susceptibility 

Rats with freeze-lesion-induced microgyria do not exhibit spontaneous seizures, 

but they have demonstrated increased susceptibility to seizures caused by hyperthermia 

(300).  Freeze-lesioned rats require a shorter latency to attain the most severe seizure 

stage (generalized convulsions) induced by an episode of hyperthermia at P10, and they 

do so at a lower threshold temperature than in control (300).  Additionally, freeze-

lesioned rats develop spontaneous seizures several weeks after a hyperthermia-induced 

seizure at P10, while unlesioned rats subjected to the same hyperthermia paradigm do not 

(299).  This model, therefore, is helpful to evaluate the propensity for seizure in the 

hyperexcitable brain.  This is useful because it reduces the likelihood of confusing 

cortical alterations that occur in response to seizures with those that may promote them.  

However, in contrast to these findings, Kellinghaus et al. found no difference in the 

amount of cortical excitability in adult lesioned rats compared to control (176).  This 

study used an in vivo recording technique and injection of bicuculline to antagonize 

inhibitory transmission and promote epileptiform activity (176).  This presents a conflict 

between the in vitro and in vivo studies, but it may be attributed, at least partially, to age 

differences with regard to both the day of lesion induction and the day the experiments 

were performed.  For the hyperthermia study, lesions were performed on P1, and 

hyperthermia was induced at P10, while the rats were still immature (299; 300).  In 

contrast, the in vivo recordings were taken from animals older than P60 that were given 

lesions on P0 (176).  Jacobs et al. previously showed that in the freeze lesion model, 
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animals lesioned on P1 exhibit hyperexcitability well into adulthood, while animals 

lesioned on P0 have a decreased incidence of epileptiform responses after P40 (157).   

The physiological evaluation of seizure activity is particularly relevant to the 

experiments in the following chapters, but behavioral studies have demonstrated other 

deficits in this model as well.  Because polymicrogyria and altered migration are also 

associated with dyslexia (123; 285), behavioral studies using methods that test the 

auditory processing in rat have been performed (111; 252; 287).  In these studies, the rats 

were tested on their ability to distinguish small silent gaps in a background of white 

noise.  Interestingly, it is through these studies that sex differences in have been 

demonstrated in this model.  For example, lesioned male rats do not perform as well as 

sham animals at tasks requiring rapid auditory discrimination, but the lesioned females 

show no deficit (111).  There is no baseline bias, as male and female sham rats perform 

the task equally well (111).  To determine whether a hormonal influence provided the 

female rats with an advantage, the stage of estrous was used as an independent variable, 

but still no difference was detected (252; 287).  Interestingly, testosterone does appear to 

contribute to differential cellular effects (287), as discussed below.  In general, lesioned 

animals also show mild cognitive deficits compared to unlesioned rats, as demonstrated 

by their performance in the Morris Water Maze (299).  One behavioral study employing 

this lesion in mouse somatosensory cortex revealed a post-lesional increase in 

contralateral thigmotaxis, or increased scanning with the whiskers represented in the 

lesioned barrel field (200).  The authors suggest that this may be indicative of increased 

excitation in the damaged cortex or a compensatory response to decreased cortical 
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activity.  This behavior resolved within one week, and other assays, such as locomotion 

and exploration of a novel environment, showed no difference (200). 

   

1.3.2.2 Cellular characteristics of the freeze-lesion model 

A number of studies have explored the origin, morphology, and functional 

changes that occur in the neuronal populations of the freeze-lesion model.  One birth-

dating study shows that the cell-dense second layer of the microgyrus contains neurons 

generated on embryonic day (E) 20, as well as those generated on E17 that would 

normally be found in layers III/IV in un-lesioned cortex (291).  Cells that populate the 

superficial layers are the last to migrate into place after the lesion is made, so the fact that 

they are labeled with bromodeoxyuridine injected prior to lesion formation suggests two 

things.  Firstly, it suggests that new neurons are not generated in response to the lesion.  

Secondly, the prenatally generated neurons must migrate through or around the damaged 

area to arrive at their final position in the cortex.   Additionally, neurons born at an earlier 

time point (E15) are not found in the lesion at all (291).  Neurons generated on E15 

would typically populate the deep layers of cortex, and the fact that they are absent is 

consistent with the mechanism of selective cell death of deep-layer neurons in this model 

(99; 291).  There does appear to be some proliferative response to the injury, but the 

newly generated cells also stain for glial fibrillary acidic protein and are likely reactive 

astrocytes (316).  The presence of these cells in the microgyrus is especially dense at the 

base, but they are located in the region immediately adjacent to microgyrus as well (44).  

The proliferative cells show signs of having an altered potassium buffering capacity that 
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may contribute to abnormal electrical behavior in and around the gyrus (44).  The 

concept of altered potassium buffering has also been demonstrated in astrocytes 

associated with epilepsy-related tuberous sclerosis, as modeled in the mouse (162).  In 

this paradigm, astrocytes have a decreased Kir current, suggesting poor potassium uptake 

that is likely secondary to a reduction in mRNA and Kir channel subunit protein (162).  

The resulting presence of excess extracellular potassium may contribute to 

hyperexcitability and epileptiform activity.  Interestingly, activated microglia have also 

been observed in cases of intractable epilepsy in humans (9; 42), although this has not 

been explicitly described in the freeze-lesion model.  Recruitment of these cells may 

occur in response to lesion formation, but microglia may also have a pro-epileptogenic 

role in the form of inflammatory cytokine secretion (356).  In fact, injections of 

interleukin (IL) β-1 have been shown to increase seizure activity and duration in a model 

of temporal lobe epilepsy (357), and increased cytokine production has been 

demonstrated following status epilepticus (86).  Further, blockade of the IL β-1 receptor 

reduced behavioral seizures in both cases (86; 357).  There are a number of potential 

ways that non-neuronal cells may contribute to the mechanism of epileptogenesis, and 

they have yet to be fully explored.    

Several alterations in cellular components suggest that a developmental delay 

occurs in the freeze-lesion model.  For example, fibers that resemble radial glia have been 

observed within the lesioned cortex up to the fifth postnatal week (290).  As no such 

fibers are found in control cortex at that time, their presence in the PMG may represent 

the persistence of an immature state.  Also, the normally transient Cajal-Retzius cells are 
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still present in PMG cortex at P12 (331).  For these reasons and others, delayed maturity 

has emerged as a theme in the lesion model, as well as for cortical dysplasia in humans.  

In fact, what is known as the “dysmature hypothesis” of cerebral development in suggests 

that the abnormal characteristics of dysplastic cortex should bear some similarity to a 

normal prenatal time point, providing some idea of when appropriate development 

deviated from the typical timeline (62).  One prominent characteristic of dysplastic 

human cortex is the presence of morphologically abnormal cells, the large, aspiny balloon 

cells and cytomegalic neurons (62).  Their similarity to neurons that populate the preplate 

suggests that incomplete development has allowed them to persist, even in mature cortex.  

These particular cell types are not observed in the rat model of polymicrogyria, although 

some subtle alterations in cell structure are seen.  Within the layers of the microgyrus and 

in surrounding tissue, pyramidal cells in layer II/III have simpler basal dendrites than 

those in control animals (129).  In contrast to this, the apical dendrites of layer V 

pyramidal cells around the lesion are longer than those in control cortex (92). 

 

1.3.2.3 Subcellular alterations of the freeze-lesion model 

On the subcellular level, some receptor subunits also have atypical or immature 

expression patterns in the freeze-lesion model.  In one study, Redecker et al. analyzed the 

optical density of immunohistochemical staining for individual GABAA receptor 

subunits, revealing a decrease in all subunits in the freeze lesion model, except for α3 

(273).  Typically, both the α3 and α2 subunits decrease their expression by the second 

postnatal week and are replaced by the α1 or α4 subunit (190).  Consistent with 
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Redecker’s observation, Defazio et al. suggested that there is a persistent expression of 

the α2 or α3 subunit in lesioned cortex, at the expense of α1 expression (89).  This was 

determined indirectly with application of zolpidem, a benzodiazepine receptor type 1-

specific agonist.  The type 1 receptor is present on the α1 subunit of the GABAA receptor, 

so the fact that zolpidem insensitivity is observed suggests that the α2 or α3, but not the 

α1 subunit was present in the recorded cells (89).  Again, this would suggest the 

prolonged expression of some subunits and a delay in the expression of others.  

Autoradiography has also demonstrated decreased binding to GABA receptors in the 

peri-lesional area, with normal binding levels in the surrounding cortex (374).  This 

means that in addition to altered subtype expression, there may also be an overall 

decrease in the number of GABA receptors.   

Glutamate receptors appear to be altered in this model as well, as an increase in 

AMPA and kainite receptor binding has been demonstrated (374), along with enhanced 

function of NR2B-containing NMDA receptors (90).  The NR2B subunit is typically 

expressed in the embryonic brain and joined by NR2A and NR2C by the end of the first 

postnatal week (218).  Augmented function of receptors with the NR2B subunit provides 

further support for persistent immaturity.  Similarly, when freeze-lesions are performed 

in utero, there is a selective increase in NR2B immunoreactivity (335).  Some of the 

lesioned animals that were also exposed to electrical stimulation demonstrated further 

enhancement of the NR2B expression (335).  Both of these results are consistent with 

increased NR2B levels in tissue taken from humans with epilepsy secondary to focal 

cortical dysplasia (110).  In contrast, NR2B is actually downregulated in tissue from 
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patients with periventricular nodular heterotopia and subcortical band heterotopia (110).  

Whether or not alterations to certain receptor subtypes occur and/or contribute to 

hyperexcitability appears to be specific to the underlying type of cortical malformation.  

Lastly, chloride transporters KCCl and NKCC2 also have delayed expression patterns in a 

portion of the PMG cortex (316).  

 

1.3.2.4 Altered anatomical connectivity 

There are some alterations to the anatomical connectivity in PMG cortex, as has 

been demonstrated through the use of neuronal tracers injected into the microgyrus, 

homotopic regions of control cortex and the thalamus (129; 130).  Thalamocortical fibers, 

commissural fibers and afferents from local pyramidal cells demonstrate abnormal 

organization in and around the microgyrus.  Retrograde labeling initiated by dye injection 

at the site of the lesion in adult rats was visible in cell bodies of the contralateral 

infragranular cortex (129).  Injections to homotopic areas in control produced retrograde 

labeling that was more prevalent in the supragranular contralateral cortex (129).  

Interestingly, when dye was injected in the unlesioned hemisphere of a lesioned animal, 

retrograde labeling indicated that more of the afferent fibers also had cell bodies of origin 

in the lower layers of the lesioned hemisphere (130).  This suggests a shift towards the 

deeper layers of cortex for both the origin and targets of commissural fibers.  Callosal 

efferents from the lesioned area also showed an increase in the density of their projection 

to heterotopic areas of cortex, concomitant with the absence of some homotopic 

projections (286).  Rosen et al. suggest that this increase could be due to the presence of 
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neurotrophic growth factors released in response to cortical injury that prevent the axonal 

pruning that would typically occur during this developmental time point (286).  In rats 

with bilateral lesions, the volume of the corpus callosum is also reduced, suggesting that 

fewer connections between the cortical hemispheres are present (346).  The extent of this 

decrease is largest when the lesions are made on P1, and less when lesions are performed 

on P3 and P5 (346).  This suggests that at early lesion dates, a number of 

interhemispheric connections may be eliminated entirely.     

Some thalamic nuclei, as well as the fibers that form connections between the 

thalamus and lesioned cortex, are altered in this model.  Although the ventrobasilar 

complex is not directly affected by the freeze-lesion itself, it has fewer neurons in the 

lesioned animals, and this is particularly the case for males (289).   The ventrobasilar 

complex normally has direct connections to somatosensory cortex; however, it loses 

those reciprocal connections with the lesioned area, its afferents instead forming a dense 

collection of fibers adjacent to the microgyrus itself (286).  This suggests that 

thalamocortical afferents originally targeting the lesioned area are rerouted to 

neighboring cortex, resulting in anatomical hyperinnervation.  A separate study within 

lesioned barrel cortex also revealed disrupted architecture and an apparent reorganization 

of afferent fibers to the PMG cortex (159).  Decreased cytochrome oxidase (CO) staining 

within the lesion itself and increased CO staining in the surrounding cortex supports the 

idea of thalamocortical afferent reorganization (159).  Additionally, within the medial 

geniculate nucleus (MGN), the distribution of neuronal size is altered in male rats, 

resulting in more small neurons and fewer large neurons (148).  This is not observed in 
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the female rat population, but this may be due to the fact that the cells are smaller to 

begin with and a change would be less noticeable (148).  This appears to be at least 

partially affected by gonadal hormones, as females who received testosterone from E16 

to P5 exhibited altered MGN neuronal size, similar to the male population (287).   

 

1.3.2.5 Altered functional connectivity 

Some of the anatomical changes described in the preceding section relate to the 

observed functional alterations in this model.  For example, cytoarchitectural 

disturbances may underlie alterations in plasticity.  While electrical stimulation in layer 

IV of neocortex can successfully induce long term potentiation (LTP) in control, the same 

procedure fails to do so in the disorganized PMG cortex (255).  This is interesting 

because stimulation of layer VI immediately elicits an NMDA-dependent LTP response 

in PMG.  In control, LTP is only produced by layer VI stimulation when bicuculline is 

also present to provide disinhibition (255). Afferent reorganization, particularly if it 

provides extra excitatory fibers to the deep layers may play a role in the altered plasticity.   

At the cellular level, increased miniature excitatory postsynaptic current (mEPSC) 

activity in PMG cortex compared to control also indicates that excitatory afferents are 

functionally increased (160).  When compared by age, PMG cells demonstrate a gradual 

increase in spontaneous (s)EPSC frequency from P7 to P11 (375).  This is prior to the 

time point when epileptiform activity can be evoked (157), suggesting that this increase 

may contribute to the onset of epileptogenesis.  The mEPSCs increase in frequency as 

well, further suggesting that an increased number of excitatory afferents may be present, 



www.manaraa.com

 

20

although increased release probability is also possible (375).  Finally, evoked (e)EPSCs 

are multipeaked and have larger amplitude and greater area in PMG, providing additional 

support to the idea of increased excitatory input to this area of cortex (375).  In the field 

potential preparation, stimulation of the cortex near the lesion (~0.5-2.5 mm from the 

lesion itself but not within it) results in evoked epileptiform activity that can spread 

through the cortex over several millimeters (203).  However, stimulating at a point distant 

to the microgyrus (approximately 3 mm away or more) does not evoke an epileptiform 

response (157).  This indicates that there is a specific region of cortex adjacent to the 

lesion that contains the mechanism for hyperexcitability.  Even when mechanically 

separated from the actual lesion, epileptiform activity can be evoked form this portion of 

cortex (157).  Interestingly, this area of excitability coincides with the area of increased 

CO staining, supporting the idea that the functional excitability is due to an increased 

number of afferent fibers (159).  

Inhibitory circuitry is also altered in the freeze-lesion model, and there is evidence 

for both impaired and enhanced GABAergic function.  A decrease in GABAA receptor-

mediated inhibitory transmission has been observed in PMG cortex, possibly due, in part, 

to weaker excitatory input onto the GABAergic cells (201).  For a subset of pyramidal 

cells in layer V of lesioned cortex, though, evoked inhibitory postsynaptic currents 

(eIPSCs) were actually enhanced (160).  In the presence of APV/DNQX, these eIPSCs 

were restored to control values, indicating that the enhanced pyramidal cell eIPSC is 

likely due to increased excitatory input to the inhibitory cells causing that response (160).  

Also, mIPSC frequency in the PMG cortex is not altered, suggesting that if release 
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probability at those terminals is maintained, there is not an alteration in the overall 

number of inhibitory synapses (160).   

 

1.3.2.6 Potential involvement of interneurons in the mechanism of hyperexcitability 

associated with polymicrogyria 

The conventional and logical explanation for the presence of hyperexcitability and 

epilepsy in malformed cortex is increased excitatory activity.  Accordingly, a functional 

increase in excitation has been demonstrated in the freeze-lesion model of 

polymicrogyria (160; 375), and it is supported by anatomical evidence (159).  However, 

as discussed above, there is evidence for the alteration of both excitatory and inhibitory 

synaptic transmission (158).  The delay between the increase in excitatory input to 

cortical PMG pyramidal cells (375) and the onset of epileptiform activity (157) also 

suggest that increased excitation alone does not account for the hyperexcitability seen in 

this model.  Furthermore, increased excitatory input to at least some inhibitory 

postsynaptic targets has also been shown (160).  Finally, recent observations support the 

intriguing possibility that enhanced, not diminished inhibitory function may play a role in 

the pathophysiology of epilepsy (183; 206; 268).  In order to clarify the potential role for 

altered inhibition in the freeze-lesion model of polymicrogyria, the experiments described 

here focus on the interneurons of the neocortex.   
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1.4 Interneurons in neocortex 

The fundamental role of the neocortical GABAergic neuron is to modulate 

excitatory output.  In addition to doing this on a cell-by-cell basis, interneurons are also 

able to shape the activity of larger areas of cortex due to coordinated actions as members 

of chemically and electrically coupled networks.  In particular, inhibitory cells are able to 

“reset” the pattern of pyramidal cell firing by exerting a rhythmic hyperpolarizing 

influence (74).  A single interneuron has the capability to simultaneously affect several 

pyramidal cells in this manner, causing a number of pyramidal cells to fire at regular 

intervals, in unison (74).  This type of patterned activity is referred to as “synchrony,” 

and it is important for a number of cortical functions.  Under physiological conditions, 

these include, but are not limited to: sensory perception, the formation of sensory 

representation maps, information processing, motor activity, states of consciousness, and 

attention (121; 319). 

Interneurons make up about twenty-five percent of the neuronal population in 

neocortex and exhibit a variety of morphologies, electrophysiological properties and 

molecular characteristics (153; 209).  Despite this diversity, interneurons share some 

common properties that differentiate them from the excitatory cells.  Most definitively, 

these non-pyramidal inhibitory cells use γ-aminobutyric acid (GABA) as their primary 

neurotransmitter, instead of glutamate.  Interneurons typically do not have an apical 

dendrite, and almost all of them lack dendritic spines (209).  Because their axons do not 

project, as pyramidal cells do, to contralateral cortex, thalamus, or spinal cord, 

interneurons are considered to be ‘local circuit neurons.’  The extent of axonal 
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arborization in these cells is usually several hundred micrometers.  Beyond these 

similarities, the variety of interneuron characteristics enables separation of interneuron 

subtypes based on distinguishing intrinsic qualities.  Furthermore, the difference in 

axonal projection and synapse target domains suggests that these interneuron groups may 

have distinct functional roles within the neocortex.  No single attribute can fully define 

any one of these neurons, but a combination of characteristics can be used to classify 

interneurons and begin to elucidate the functional relationships they have both with each 

other and with the excitatory cells of the brain. 

 

1.4.1 Morphology of interneuron subtypes 

Nearly a century ago, Santiago Ramón y Cajal noted that interneurons, or ‘cells 

with the short axon,’ did not all have the same appearance (271).  Since then, these cells 

have been classified based on the differences in the shape of the soma and dendritic tree, 

the extent of axonal arborization, and in some cases, laminar position (1).  The different 

morphologies can be divided into two main groups; those with vertical or intracolumnar 

orientation, and those with horizontal or intralaminar orientation.  There are a number of 

different cell types that are considered to be vertically-oriented.  Martinotti cells, found 

mainly in the deep layers of cortex, but also in layer II/III, have a clear vertical bias 

(105).  From the cell body of origin, Martinotti cell axons ascend to layer I where they 

branch and may extend over a significant horizontal distance (105; 209).   Bitufted cells, 

located mainly in layers II-V, have ovoid cell bodies and vertically oriented axonal 

arbors.  Bipolar and double-bouquet cells have columnar axons whose distribution lies 
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within narrow, radially-oriented columns of tissue (105).  Their names, however, refer to 

the two groups of dendritic branches that originate from opposite ends of the soma, 

giving these neurons their characteristic appearance.  Double-bouquet cells are largely 

found in the supragranular layers and have descending axons (105).  Bipolar cell axons 

may originate from the cell body or a proximal dendrite and contact only a few cells 

(209).  Two primary classes of horizontally-oriented interneurons are the chandelier cells 

and basket cells.  Chandelier cells, present in all cortical layers, are named for their 

distinctive morphology.  Their horizontal axons have many short, vertical branches with a 

number of boutons that selectively form synapses on the initial segments of pyramidal 

cell axons (323).  Basket cells also have intralaminar orientation.  Larger cells send axons 

into neighboring columns, while smaller cells have dense arborizations that form multiple 

connections on neighboring cell bodies and their associated proximal dendrites (209; 

360).  The fact that interneurons can be divided into these two categories has functional 

relevance, as different cell types may perform different roles.  The vertically-oriented 

cells that span the layers of cortex have the potential to provide simultaneous inhibitory 

input to the neurons within a column.  In contrast, the horizontally-oriented cells that 

synapse on neighboring cell bodies within the same layer may provide inhibition between 

columns.   

 

1.4.2 Electrophysiological characteristics of interneuron subtypes 

With regard to action potential firing patterns, interneurons may fire at a 

consistent rate, have an irregular pattern, or show clear adaptation (209).  Onset of action 
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potential firing may be immediate, delayed, or occur in bursts (209).  Of the numerous 

existing firing patterns, the majority of this discussion will focus on the fast-spiking (FS) 

and low threshold-spiking (LTS), as they describe the two interneuron populations that 

were evaluated for these studies.  Interneurons that fire a rapid train of action potentials 

showing little accommodation are classified as FS cells (219). These cells also have 

exceptionally short action potential half-widths of <1ms (169), and their maximum firing 

frequency is approximately 330 Hz (172).  Frequently they are basket cells with dense 

horizontal axonal arborizations that target the somata or dendrites, or they may be 

chandelier cells (172).  The LTS interneurons tend to have bipolar or bitufted 

morphology.  LTS cells respond to depolarizing current with an initial group of 

temporally close action potentials, followed by an attenuating train of action potentials 

(169).  LTS interneurons are also capable of firing rebound action potentials when 

returned to resting membrane potential following application of a hyperpolarizing current 

(169).  The action potential itself is slightly longer in LTS cells (> 1ms) than in FS cells 

(169), and maximum firing frequency approaches 250 Hz (172).  Input resistance for LTS 

interneurons (>350 MΩ) is typically higher than in FS interneurons (<350 MΩ), and LTS 

resting membrane potentials tend to be more depolarized (169).  The action potential 

afterhyperpolarization (AHP) time to peak is shorter in FS interneurons, compared to 

LTS (169).  Inhibitory postsynaptic currents (IPSCs) recorded from FS cells are more 

frequent, have a larger amplitude and show faster kinetics than those seen in LTS cells 

(15).  This may be due to differential expression of GABAA receptor subunits (15).  
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Together, morphological and electrophysiological characteristics suggest an anatomical 

and functional separation of intralaminar and intracolumnar inhibitory components (169).  

These distinct firing patterns are not evident at birth.  Studies in mice show that 

during the first two postnatal weeks, populations of layer IV regular-spiking and FS 

interneurons come from a single population of intermediate spiking cells (214).  The 

early population of cells fires low-frequency action potential trains without 

accommodation or fast AHP.  Characteristics of FS and RS cells begin to emerge during 

the first postnatal week, and these cells are encountered with increasing frequency until 

about P14 (214).  Mature action potential firing patterns are dependent on a complement 

of specific ion channels in the neuronal membrane.  In particular, the kinetics of the 

potassium-driven AHP may determine the distinctive rapid firing pattern of the FS cell.  

The Kv3 family of voltage-gated potassium channels appears to be necessary for this 

fast-spiking characteristic (212; 214).  Comparatively, pyramidal cells lack Kv3 but do 

contain Kv4 (212).  The presence of mRNA for Kv3.1 is correlated with the FS 

phenotype (214), and FS cells from Kv3.2 knockout mice were found to have broader 

action potentials and a smaller AHPs than controls (189).  Voltage-gated potassium 

channels formed from these subunits are activated with depolarization, causing the action 

potential to be followed by a large hyperpolarization, quickly preparing the cell to fire 

another action potential.  Blocking Kv3.1 and Kv3.2 with tetraethylammonium resulted 

in disappearance of the typical AHP and a decreased firing rate in FS cells (104). 
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1.4.3 Molecular markers of interneuron subtypes and development of their expression 

Interneurons selectively express certain proteins and peptides, making cellular 

content a useful characteristic for distinguishing subtypes.  Three main calcium-binding 

proteins used for this purpose are parvalbumin (PV), calbindin (CB), and calretinin (CR).  

Peptides present in interneurons include somatostatin (SS), neuropeptide Y (NPY), 

vasoactive intestinal peptide (VIP) and cholecystokinin (CCK,172; 173).  Some of the 

peptides also serve as co-transmitters and may be released concomitantly with GABA.  

Somatostatin, for example, has been shown to inhibit the presynaptic release of both 

GABA and glutamate from neurons in the rat basal forebrain (230).  

Within different areas of cortex, expression of some markers can be used to 

define separate, non-overlapping populations of cells.  In layers II/III, V and VI, the three 

major cellular markers expressed in separate interneuron populations are PV, SS and VIP 

(175).  CB is also prevalent in these layers, overlapping with a small percentage of PV 

interneurons and a substantial portion of SS interneurons.  Specifically in the deep 

cortical layers, nearly the entire CB cell population also expresses SS (184).  VIP-

containing interneurons may also express CCK and CR, but CR is not co-expressed with 

SS or PV (60; 175).  For some peptides, stereotypical morphologies can be correlated.  

One group of SS interneurons has axons that ascend to layer I, giving off collateral 

branches in the intervening lamina (175).  This morphology is indicative of Martinotti 

cells, which have been shown to express SS but never VIP or PV (209).  VIP is 

characteristically expressed in bipolar cells (209).  The molecular markers are associated 

with certain physiological cell types as well.  PV expression is correlated with FS 
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electrophysiology (60; 173; 175).  Expression of CB (173; 175) and SS (131) are 

observed in cells with LTS firing characteristics.  Further, analysis of mRNA in LTS 

interneurons indicates that SS is the most commonly expressed neuropeptide in those 

cells (60).   

The development of the molecular marker phenotype may depend on cues in the 

cortical environment, as opposed to being genetically predetermined, since not all cells 

that derive from the same precursor contain the same calcium-binding protein (226).  One 

example of this is NPY, the expression of which is a transient characteristic for some 

cells in cortex.  NPY is a peptide that appears to act presynaptically, preventing the 

release of glutamate.  It has also been shown to reduce excitation in the hippocampus 

(75).  During development, a number of immature interneurons are immunopositive for 

NPY.  Due in part to the influence of thalamocortical afferent input, the subset of these 

cells that also eventually express PV shows a decrease in NPY production (359).  A 

change in the balance of inhibitory and excitatory input to a developing interneuron may 

also have an effect on its cellular contents.  In hippocampal slice culture, application of 

the GABAA receptor blocker bicuculline produced a slight increase in the number of CR-

expressing cells and a dramatic increase in the number of SS-producing cells (213).  

Application of the AMPA receptor blocker DNQX shifts the balance of inputs to favor 

inhibition, and while it did not appreciably alter the number of CR-expressing cells, it did 

cause a large drop in the number of cells containing SS (213).  Assuming the same 

phenomenon occurs in neocortex, increased excitation during development, then, has the 

potential to lead to an increase in number of somatostatin-expressing cells.   
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Furthermore, cluster analysis of gene expression has revealed a correlation 

between the mRNA for three main classes of ion channel expression and the three 

identified calcium-binding proteins (349).  This indirectly strengthens the link between 

specific cellular contents and particular electrophysiological properties, as ion channels 

are responsible for the characteristics of action potential firing.  For example, 

interneurons expressing mRNA for CR also contain a cluster of genes for ion channels 

that are associated with accommodation (349).  The ion channels correlated with CB are 

associated with bursting behavior (349).  PV is present in cells with ion channels that are 

appropriate for high frequency discharge (72; 349), and it also correlates with 

interneurons demonstrating FS firing patterns (60).  Although it is not possible to 

unambiguously place each and every interneuron in a strictly defined group (209), the 

connections between morphology, electrophysiology and molecular markers make it 

possible to more clearly segregate the roles that may be shared by similar cells.    

 

1.4.4 Interneuron connectivity and circuitry 

The morphological and electrophysiological differences between interneuron 

subtypes can be translated into functional differences as well.  Subtypes of interneurons 

may be able to perform particular roles by virtue of the fact that they target specific 

domains on an excitatory cell (175; 209; 324).  Interneurons that send synapses to the 

soma affect the local generation of sodium dependent action potentials, while those that 

synapse on distal dendrites may modulate calcium-dependent action potentials (217; 

225).  Interneurons that synapse on dendrites are more suited to have a modulatory role in 
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general, due to their distance from the soma, while cells synapsing on or near the cell 

body can effect stronger inhibition.  A particularly good example is the chandelier cell; 

synapsing selectively on the axon initial segment of pyramidal cells, it provides the final 

inhibitory control before the action potential is allowed to propagate down the axon 

(323).  Interneurons with different electrophysiological properties can also elicit 

postsynaptic responses that can be differentiated from each other.   For example, IPSCs 

recorded in pyramidal cells are typically larger when produced by FS cells than when 

they are produced by LTS cells (369). 

GABAergic neurons also create synapses with various classes of other inhibitory 

cells (141; 324) and, through autapses, themselves (324).  This connectivity is determined 

by morphology and cell type; while some are highly connected, others are not.  For 

example, there are no chandelier cell-chandelier cell connections (337).  Basket cells can 

synaptically target double bouquet cells, but more frequently, they target other basket 

cells (337).  Paired recordings have demonstrated that functional chemical synapses exist 

between FS and LTS cells, although of the various possible synaptic combinations, there 

is the least LTS to LTS cell inhibition (131).  Electrical coupling through gap junctions 

occurs in neocortex as well, connecting one interneuron to others of the same 

electrophysiological type (125).     

With regard to the excitation of interneurons, the GABAergic cells receive 

glutamatergic input for one of two purposes: (1) to produce feed-forward inhibition in 

response to direct excitation, or (2) to complete a feedback mechanism, usually initiated 

by axon collaterals from principal cells.  The EPSCs recorded from interneurons are 
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faster than the corresponding events in pyramidal cells (51; 128; 149).  Interneurons with 

basket cell morphology and somatic targets tend to receive fewer synapses from a single 

pyramidal cell than dendrite-targeting or bipolar interneurons (51).  However, 

thalamocortical input to GABAergic cells preferentially innervates FS over LTS 

interneurons in neocortex (131).  Additionally, it has been shown that thalamocortical 

fibers produce EPSPs that have larger amplitudes and are more reliable in FS cells than in 

nearby spiny cells (330). 

Target-cell-specific modification of excitatory input has also been shown to differ 

between interneuron subclasses.  Generally, paired pulse depression occurs in 

interneurons that target perisomatic domains, but paired pulse facilitation is observed in 

dendrite-targeting interneurons (276).  Confirming this, in bitufted cells that express 

somatostatin, facilitating eEPSCs are elicited.  Multipolar cells with parvalbumin 

immunoreactivity demonstrate a depressive response (276).  Also, when postsynaptic 

responses are recorded from different interneurons innervated by the same pyramidal cell, 

facilitation and depression are both observed, suggesting that the differential effect on 

eEPSPs is due to factors unique to each synapse, dependent on the postsynaptic 

interneuron subtype (276; 360).  Furthermore, a single interneuron produces the same 

characteristic response (either facilitating or depressive) when stimulated by several 

different pyramidal cells, although each of them may have a different time course (210).  

The cellular location of excitatory afferents may play a role in this temporal disparity. 

Chemical synapses between interneurons allow the formation of circuits, but 

more specialized networks are formed when certain interneuron subtypes are joined 
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through electrical connections.  Dye coupling has been observed between interneurons in 

hippocampus (224) and in neocortex (78), indicating that these cells are contiguous.  

Coupling occurs at a greater frequency and for a larger number of interconnected neurons 

in juvenile cortex (two weeks postnatal) than for adult cortex (78; 253).  Specifically, gap 

junctions between PV immunopositive interneurons with FS characteristics have been 

described in neocortex (79; 122; 131), and electrical connections between SS-containing 

LTS cells have also been demonstrated (79; 87; 131).  Synchronous responses in pairs of 

LTS cells following the application of a metabotropic glutamate receptor agonist have 

been shown to depend on electrical coupling (27).  Molecular work and 

immunohistochemical studies have supported the presence of a gap junction protein 

nearly specific for neural tissue, Cx36 (76; 83; 272).  Cx36 is sparsely expressed in adult 

rat cortex but has a fairly global presence in neurons of the early postnatal cortex, as 

measured by both immunohistochemistry and in situ hybridization (29; 30).  Both PV and 

SS-expressing interneurons can be identified by a β-gal reporter activated by the Cx36 

promoter, indicating that Cx36 is likely responsible for the electrical connections in both 

types of interneuron (87).  Knock-out mice that lack Cx36 have shown a loss of electrical 

communication between inhibitory cells in cortex, as well as a severe impairment in LTS-

driven oscillatory activity (87).  While FS and LTS cells do inhibit each other through 

synaptic contacts they are virtually never electrically connected to each other (131). 
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1.4.5 Modulation of activity 

Neuromodulatory transmitters provoke a variety of responses in interneurons 

based on cell type.  Acetylcholine, for example, hyperpolarizes FS cells but excites LTS 

cells in rat visual cortex (368), providing a mechanism for differential control of 

interneuron subpopulations.  Dopamine differentially modulates inhibitory transmission 

from separate interneuron subtypes as well (126; 351).  Norepinephrine and serotonin 

have heterogeneous effects on interneurons (14).  There is also evidence that specific 

interneuron subpopulations are selectively targeted by serotonergic afferent inputs (106; 

249).   

Interneurons have the capability to modulate their own activity as well.  

Neocortical FS cells use GABAergic autaptic (self-synapsing) transmission, which is 

largely responsible for the precision of the action potential train they are able to fire in 

response to an injected depolarizing pulse (12).  By virtue of the fact that FS cells 

synapse on themselves and other FS interneurons, simultaneous autaptic and synaptic 

inhibition could contribute to synchronous activity within a population of these cells.  

Experiments blocking autaptic transmission with gabazine increased the variability of 

spike firing in FS cells, while simulating autaptic transmission on pyramidal cells 

resulted in increased precision of action potential firing (12).  Corroborating this with 

morphology, immunohistochemical data shows that both basket cells and dendrite-

targeting cells form numerous autapses (336); however, double bouquet cells do not form 

as many (324).  Bacci et al. demonstrated that LTS cells in neocortex generally do not 

provide self-inhibition via autaptic connections, but they can modulate their own activity 
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by producing endocannabinoids that function in an autocrine manner (13).  This has been 

referred to as a slow self-inhibition in which the experimental application of multiple 

trains of action potentials results in a prolonged hyperpolarization of the membrane 

potential.  This long-lasting effect specific to LTS cells is similar to a subtype-specific 

long term depression (13). 

 

1.5 Development of interneurons 

In order for the cellular components of the neocortex to perform their correct 

functions, proper development must ensure the correct lamination and connections.  

Disruption of this process produces the malformations described earlier in this chapter.  

The following sections discuss our current understanding of interneuron development and 

migration in normal cortex, a process that has some differences compared to pyramidal 

cell migration.  Cortical excitatory neurons are generated in the ventricular zone and form 

the preplate, the platform for the developing neocortex.  When neurons divide and exit 

the cell cycle to differentiate, they split the preplate into two parts, the subplate (near the 

ventricle) and the marginal zone (close to the pial surface).  A scaffolding of radial glia 

guides migrating pyramidal neurons to their proper layer, determined by neuronal birth 

date.  Cortical GABAergic neurons, on the other hand, originate in one of several 

interneuron progenitor regions in the subpallial telencephalon and migrate tangentially to 

the cortex (112).  
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1.5.1 Neurogenesis, migration, maturation 

The medial, lateral, and caudal ganglionic eminences (MGE, LGE, CGE) of the 

developing basal ganglia are the source of cortical interneurons in rodents (6; 237; 363).  

The formation of different subtypes of interneurons from these sources may be due to 

separate pools of progenitors, factors present in the cortex during their time of migration, 

or a combination of both of these (54; 112).  The MGE appears to be the source of cells 

expressing somatostatin and parvalbumin, but not calretinin (370).  In vivo studies in 

mice that lacked the regionalization-regulating transcription factor Nkx2.1 revealed a 

very poorly developed MGE, and only fifty percent of expected GABAergic cell 

population was present by E18.5 (332).  In this model, there was almost a complete lack 

of cells immunopositive for somatostatin (6).  In conjunction with this, 

electrophysiological studies of MGE and CGE-derived interneurons also reveal two main 

cell types.  Recordings from MGE-derived cells indicate that the predominant mature 

interneuron type formed is the FS cell (54).  This parallels the finding that parvalbumin 

positive cells derive from the MGE precursor population (370).  The second most 

populous type had firing characteristics similar to LTS cells, which is consistent with the 

firing patterns of cells described previously to contain somatostatin (54; 60).  In the 

mouse, cells that originate in the MGE migrate through the neocortical SVZ in order to 

populate the neocortex with a large proportion of its inhibitory cells (363).  Although 

cells from the LGE were originally thought to populate the cortex as well, they generally 

remain in the basal forebrain and migrate to the olfactory bulb (363).  CGE-derived cells 

migrate to layer V of the neocortex but also to hippocampus and several basal ganglia 
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structures (237; 363).  While cells from the MGE appear to migrate laterally and spread 

widely, CGE-derived cells travel more specifically toward the caudal end of the 

telencephalon, and they do it more rapidly than cells from the MGE (223). 

 

1.5.2 Cortical organization and lamination 

Cortical organization is complex, including layer-specific targets and outputs as 

well as local circuitry, and it is important that inhibitory cells migrate to the appropriate 

position within the neocortex.  Interneurons follow the same inside-out developmental 

pattern used by neocortical projection cells (7; 354).  The reelin pathway is a crucial 

signaling pathway for the proper development of lamination by projection neurons, and it 

has recently been implicated in the laminar distribution of interneurons as well.  Studies 

in Reelin and Dab-deficient mice demonstrate that early-born interneurons in animals 

lacking this signaling pathway (E12.5-13.5) have a pattern of layer inversion, but late-

born cells (E15.5-16.5) are randomly dispersed throughout the entire cortex (143).  To 

investigate whether this was actually due to a deficit in reelin signaling or if the cause 

was simply an insufficiency in local cues caused by the distorted arrangement of 

projection cells, a p35 mutant displaying aberrant cortical structure but intact Reelin was 

used.  In this case, the late-born interneurons found their proper destination (143).  It is 

possible, then, that the early-born cells may rely more on environmental cues from other 

cellular elements for their proper lamination, while late-born interneurons depend heavily 

on reelin signaling.  Interestingly, late-born interneurons transplanted into younger tissue 

are able to adopt the fates expected for early-born interneurons, and the converse is also 
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true (354).  This suggests that while the birth date of interneurons is a key determinant for 

ultimate laminar identity, the migrating cells also rely on extracellular cues to find their 

place in the developing neocortex.  In the freeze-lesion model, the combination of 

ischemia and cell death may affect these cues and, as a result, interneuron migration.  In 

fact, Reelin deficiency has a demonstrated association with the development of 

microgyric lesions (277).  Disrupted organization of Reelin-secreting Cajal-Retzius cells 

was also observed within this malformation.  These observations were made in a 

transgenic mouse overexpressing brain-derived neurotrophic factor (BDNF), which 

appears to downregulate the expression of Reelin (277).  This is interesting in light of the 

fact that the presence of Cajal-Retzius cells is actually prolonged in the freeze-lesion 

model (331).  The presence of persistent reelin-positive cells resembling Cajal-Retzius 

cells has also been observed in a number of patients with polymicrogyria (103).  If excess 

BDNF affects both Reelin and Cajal-Retzius cells, perhaps some abnormality in this 

neurotrophic factor contributes to their extended presence in PMG cortex. 

Interneurons also exhibit a type of movement called ‘ventricle-directed 

migration.’  GABAergic cells generated in the ganglionic eminences migrate tangentially 

toward the ventricular zone, where excitatory cells are undergoing neurogenesis.  At that 

point they stop, then continue in a radially directed manner toward their final destination 

in the neocortex (223; 235).  BrdU labeling studies have shown that cells immunopositive 

for GABA are post-mitotic when they are present in the ventricular zone, indicating that 

they are not being generated in that location (243).  Perhaps this migratory route through 

the ventricular zone provides the interneurons with signaling information to facilitate the 
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integration of these cells into cortical layers in a manner that is coherent with their 

isochronic excitatory counterparts. 

 

1.6 Summary and hypothesis  

Hyperexcitability in malformed, epileptogenic cortex is a complicated 

phenomenon that likely requires the contribution of several cortical components.  At this 

point, it is known that epileptiform activity can be evoked from the freeze-lesioned cortex 

beginning abruptly at P12 (157), but increased functional excitatory input to pyramidal 

cells develops gradually during the preceding week of postnatal development (375).  The 

delay prior to the expression of hyperexcitability suggests that developmental processes 

may “mask” the effect of increased excitation until the end of the second postnatal week.  

Of the other cell types in neocortex that may play a role in this, interneurons are an 

attractive target for several reasons.  During the first two postnatal weeks, these cells are 

in the process of maturing with regard to the action of GABA (278), expression of 

calcium binding proteins (4) and firing pattern (214).  As persistent immature 

characteristics are observed in this model (290), one possibility is that the normal 

development of interneurons is delayed.  By the second postnatal week, insufficient 

inhibitory control may simply permit excitation to dominate.  However, inhibitory 

function appears to keep excitation in check until that time.  Furthermore, there is indirect 

evidence of increased excitatory input to inhibitory cells in this model (160).  A second 

possibility, and the one addressed by this study, is that the interneuron population is 

altered during development in a way that actively contributes to hyperexcitability.   
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Evidence of interneuron alteration has been demonstrated in experimental 

paradigms of hyperexcitability and epilepsy, including the freeze-lesion model.  In 

addition, immunohistochemical studies support the concept that this effect can be 

subtype-specific (49; 93).  Rosen et al. have demonstrated a selective decrease in PV 

immunostained cells in PMG cortex (288).  There is a corresponding decrease in the 

number of cells expressing PV in human tissue removed from patients with intractable 

temporal lobe epilepsy (91).  However, contrasting evidence from a separate study shows 

no change in the number of PV cells in PMG cortex (308).  One possible reason for this 

discrepancy is that while Schwarz et al. counted cells within columns spanning the entire 

distance from pia to white matter, Rosen et al. considered the superficial and deep layers 

as separate populations.  By separating the populations, the authors revealed an 

infragranular -specific decrease in the PV-expressing interneuron population (288).  

Partially for this reason, layer V was chosen for the studies reported here.  A transient 

decrease in PV expression was also observed in supragranular layers that resolved after 

P21 (288).  Comparatively, at the time that epileptiform activity can first be evoked in the 

freeze lesion model (P12), there appears to be no change in the number or density of the 

subset of interneurons expressing SS in PMG cortex (250).  The experiments described in 

the following chapters investigate whether this type of selective alteration is also 

observed with regard to the intrinsic properties and/or functional connectivity of 

interneurons.  

The general hypothesis of this study is that interneuron populations in the freeze-

lesion model are differentially affected in a pro-epileptogenic manner.  More specifically, 
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these experiments are based on the premise that increased vertical inhibition, due to 

alterations in the LTS population, could promote columnar synchrony; while decreased 

horizontal inhibition, due to alterations in the FS population, could lead to the spread of 

this synchronous activity to neighboring columns.  Prior to making statements about the 

network activity of these interneuron populations, however, it is important to understand 

the properties of each subtype in order to determine what pertinent changes occur at the 

cellular level.  Therefore, the three main questions addressed by the work presented in 

this dissertation are: 

(1) Is interneuron subtype identity maintained in lesioned cortex, and are the intrinsic 

properties of these subtypes differentially affected by this developmental insult?    

(2) Is the excitatory synaptic input to interneuron subtypes differentially altered in 

malformed, epileptogenic cortex? 

(3) Is the inhibition mediated by vertically-oriented LTS cells increased in lesioned 

cortex? 
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Chapter 2 

Altered Intrinsic Properties of Neuronal Subtypes in Malformed, Epileptogenic 

Cortex  

 

Introduction 

Neuronal output is shaped by intrinsic properties that influence the reliability and 

pattern of action potential firing in response to synaptic input (25; 33; 180).  These 

properties are secondary to the complement of ion channels located in the neuronal 

membrane, as well as the currents that pass through them (25; 164; 372).  Increasingly, 

CNS disorders such as epilepsy are being linked to aberrant ion channel expression and 

the corresponding current alterations (35; 56; 165).  In particular, this has been 

demonstrated in pediatric epilepsy related to cortical dysplasia (64; 215).  Although the 

mechanisms that underlie epilepsy are not fully known, it is likely that changes to both 

neuronal intrinsic properties and synaptic connectivity play a role (53; 270).  In fact, 

when modeling epilepsy in a paradigm that does not include disinhibition, alteration of 

intrinsic properties is necessary for the development of epileptiform activity (53).  

Specifically, the creation or enhancement of a neuron’s capacity to generate bursts of 

action potentials promotes the development of hyperexcitability (65; 267; 296; 361).   

Alterations to the intrinsic cellular properties that appear to play a role in the 

pathology of hyperexcitability have been demonstrated in various animal models.  For 
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example, in the TISH rat that mimics subcortical band heterotopia, pyramidal cells 

identified by morphology and firing pattern had resting potentials that were more 

depolarized than those in control cells (352).  In a model of post-traumatic cortical 

hyperexcitability, pyramidal cells demonstrate higher input resistance, a longer time 

constant and a steeper f-I slope than control (270).  Also, in the methylazoxymethanol 

(MAM) model of cortical dysplasia and heterotopia, some pyramidal cells exhibited 

smaller peak amplitudes, higher input resistance, longer action potential duration, less 

adaptation and higher firing frequency than control (56).  Abnormal potassium channel 

expression in hippocampus (56) and excessive bursting behavior in neocortex (297) were 

also observed.  In the freeze-lesion model used for the present study, pyramidal cells in 

layer II/III have altered intrinsic properties, such as decreased spike amplitude, maximum 

rate of spike rise, dV/dt ratio and primary F-I slope (201).  These characteristics reflect 

delayed maturation, which has emerged as a theme in this model (142; 290; 331) and is 

also characteristic of human cortical dysplasia (62).  For the purpose of comparison with 

the layer II/III results, but also because epileptiform activity likely originates in layer V 

(341), the focus of this work will be on layer V(342).  In the freeze-lesioned cortex, 

excitatory synaptic input to layer V pyramidal cells gradually increases during the second 

postnatal week (375), but epileptiform activity cannot be evoked until postnatal day (P)12 

(157).  It is possible that until P12, concurrent developmental processes in the inhibitory 

cell population are sufficient to dampen the effect of increased excitation.  Normally, by 

the end of the second postnatal week, a number of properties of both inhibitory and 

excitatory neurons approach mature values (4; 118; 214; 220; 278).  If maturation of 
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intrinsic properties is delayed or otherwise altered in either population, it may be 

sufficient to “unmask” the synaptic changes.  Therefore, we have chosen to investigate 

the intrinsic properties not only of pyramidal cells, but also interneurons of layer V in 

lesioned cortex. 

Interneurons exhibit a multiplicity of properties that have been used to categorize 

them into a number of distinct groups (60; 61; 170; 173).  The morphological variety of 

inhibitory cell types suggests that there is normally an anatomical division of labor 

among the interneurons of the cortex (209).  Previous epilepsy studies suggest that 

interneuron subtypes can be selectively affected in both animal model and human patient 

tissue (49; 91; 288).  For this reason, it is necessary to compare not only excitatory and 

inhibitory cell types, but also interneuron subtypes individually.  In particular, fast-

spiking (FS) and low-threshold-spiking (LTS) interneurons have been well-described and 

differ significantly on a number of intrinsic characteristics (28; 131; 169; 173).   FS 

interneurons are immunopositive for PV (60; 170), have basket cell or chandelier cell 

morphology (170; 172), receive powerful thalamocortical input and synaptically target 

cell bodies and thick dendrites (175).  In FS cells, action potential half-width is typically 

less than 1 ms and there is little to no adaptation in the characteristically high action 

potential firing frequency (60; 173).  In contrast, LTS interneurons have an action 

potential half-width slightly greater than 1 ms and an action potential firing pattern that 

shows clear adaptation (173).  LTS interneurons are often immunopositive for SS (60; 

170), have bipolar or bitufted morphology (170; 172), receive little input from thalamus, 

and synaptically target thin dendrites distant from the soma (175).   
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Here we have examined the intrinsic properties of layer V pyramidal cells and 

two subtypes of interneurons to determine: (1) whether subtype identity is maintained in 

malformed cortex; (2) if the focal loss of deep layers during the last stages of neuroblast 

migration into the cortical plate can alter intrinsic properties; and (3) whether neuronal 

subtypes are differentially affected by this developmental insult.     

 

Materials and Methods 

 

Freeze lesion surgery 

Freeze lesions were made as described previously (375).  Rat pups aged postnatal 

day (P)1 were anesthetized with hypothermia by placing them in ice for 4-6 minutes, and 

an anterior-posterior incision was then made in the scalp.  The freeze probe, consisting of 

a copper bar with a 2x5 mm rectangular tip cooled to -50◦C, was applied to the exposed 

skull over the somatosensory cortex of the left hemisphere for 5 seconds.  The skin was 

sutured, the pup warmed and returned to the dam.   

 

In vitro slice preparation and electrophysiology 

Lesioned animals and unoperated control rats aged P12-17 were anesthetized with 

isoflurane and decapitated.  The brain was quickly removed and immediately placed into 

cold (4◦C) sucrose slicing solution containing (in mM): 2.5 KCl, 1.25 NaH2PO4, 10 

MgCl2, 0.5 CaCl2, 26 NaHCO3, 11 glucose and 234 sucrose.  For interneuron recordings, 

coronal sections 300 µm thick were made and transferred to a holding chamber filled 
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with artificial cerebrospinal fluid (aCSF) containing (in mM): 126 NaCl, 3 KCl, 1.25 

NaH2PO4, 2 MgCl2, 2 CaCl2, 26 NaHCO3, and 10 glucose.  In attempts to select and 

record from various interneuron subtypes, the inclusion of some pyramidal neurons in the 

group of recorded cells is inevitable.  As an aid to determine which cells were pyramidal, 

we have included here, for comparison, the intrinsic properties of pyramidal neurons 

recorded in a separate study.  The focus in that separate study was to isolate layer V 

pyramidal neurons from other laminar influences, and therefore, the slices were cut 

horizontally (300 µm) through layer V.  Neurons in the control horizontal slices had 

intrinsic properties similar to those previously reported for layer V pyramidal neurons in 

coronal slices (201).  After sectioning, slices were transferred to a holding chamber filled 

with artificial cerebrospinal fluid (aCSF) containing (in mM): 126 NaCl, 5 KCl, 1.25 

NaH2PO4, 2 MgCl2, 2 CaCl2, 26 NaHCO3, and 10 glucose.  For these cells, recordings 

were made in normal aCSF containing dinitroquinoxaline [(6,7)],2,3(1H,4H)-dione 

(DNQX, 20 µM) and  D,L-2-amino-5-phosphonopentanoic acid (APV, 100 µM) to block 

AMPA and NMDA receptors, respectively.  Sections were maintained at 34◦C for 45 

minutes and at room temperature thereafter.  All solutions were infused with 

95%O2/5%CO2, maintaining pH at 7.4.  Recordings were made in aCSF at 30-32◦C, 

osmolarity was adjusted to ~290 mOsm.   

The whole-cell patch clamp technique was used to record from layer V 

interneurons and pyramidal cells in somatosensory cortex from both control and 

malformed cortex.  Prior to recording, access resistance (Ra) was measured, and only 

those cells with Ra less than 23MΩ were used for analysis.  Recordings were terminated 
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if access resistance increased more than 20% or if there was any evidence of declining 

cell health.  The cortical area used for recording was 0.5-1.5 mm on either side of the 

lesion and from homotopic cortex in controls.  Interneurons were selected based on 

morphological criteria identified under DIC optics: absence of the apical and basal 

dendrites and smaller soma than the typical layer V pyramidal cell.   These recordings 

specifically targeted LTS and FS cells.  LTS cells were identified by their spindle-shaped 

appearance and large processes extending towards both the pial surface and subcortical 

white matter.  FS cells had smaller somata with thinner processes in a multipolar 

distribution.  Pyramidal cells were identified by their relatively larger somata and 

prominent apical dendrites.  The intracellular solution used for interneuron recordings 

contained (in mM): 130 K-gluconate, 10 Hepes, 11 EGTA, 2 MgCl2, 2 CaCl2, 4 Na-ATP, 

and 0.2 Na-GTP.  Patch solution for pyramidal cell recordings in horizontal slices 

contained (in mM): 70 K-gluconate, 70 KCl, 10 Hepes, 4 EGTA, 2 NaCl, 4 Na-ATP, 0.3 

Na-GTP.  Osmolarity and pH of the intracellular solution were adjusted to 275-285 

mOsm and pH 7.3.  In some cases biocytin (0.05-0.2%) was included in the pipette in 

order to identify neuronal morphology with subsequent staining.  Biocytin-filled cells 

were visualized using fluorescein-conjugated streptavidin (10 µg/mL, Molecular Probes). 

 Recordings in current clamp were made using a Multiclamp 700A (Axon 

Instruments) and digitized with a Digidata 1320A and pClamp software (Axon 

Instruments, at 20 kHz).  The resulting files were analyzed using Clampfit (Axon 

Instruments) and Minianalysis (Synaptosoft) software. 
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Intrinsic property measurements 

Each cell was injected with a series of hyperpolarizing and depolarizing square 

pulse currents, 400 ms in duration.  Current was delivered at an initial level of -40 nA, 

then increased by steps of 20, 30, or 40 nA to the point where the cell fired at a maximal 

rate.  From these recordings, a number of intrinsic properties were calculated for both 

pyramidal cells and interneurons.  Adaptation was calculated three ways.  Total 

adaptation was calculated by dividing the frequency of the last two action potentials by 

the frequency of the first two.  Early adaptation was calculated as the ratio of the 

frequency of action potential firing at 200 msec to the frequency of the first pair of action 

potentials.  Late adaptation was calculated as the ratio of the frequency of the last pair of 

action potentials and the fourth pair.  A ratio of one represents no adaptation, while 

increased adaptation is reflected by an increasingly smaller number.  Other measures 

included action potential half-width, percent increase in half-width from the first to 

second action potential, peak of first and second afterhyperpolarizations (amplitude 

measured relative to the threshold for action potential firing), time to peak for the first 

AHP (relative to the first action potential peak),  accommodative hump (the difference 

between the peak of the smallest action potential and the peak of the subsequent largest 

action potential), minimal discharge frequency and time of minimal discharge.  Action 

potential amplitude, maximum rates of rise and decay, dV/dt ratio and primary F/I slope 

were also calculated as described previously (201).  Briefly, the amplitude and the max 

rise and decay rates were determined for the initial action potential in the first sweep with 

a suprathreshold current.  Primary F/I slope was determined from a plot of the frequency 
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of the first two action potentials (Hz) versus the magnitude of injected current (nA).  t-

tests were used to compare control vs. PMG for each group, p <0.05 was considered to be 

significant. 

 

Immunohistochemistry 

Rats aged P13-14 were anesthetized with isoflurane and transcardially perfused 

with 4% paraformaldehyde.  The rats were decapitated, each brain removed and stored in 

paraformaldehyde at 4°ºC overnight.  Parasagittal sections 80 µm thick were made from 

the left hemisphere of both lesioned animals and un-operated controls.  Simultaneous 

triple immunohistochemical staining was performed for SS (rabbit anti-SS, 1:1000, 

Peninsula Labs; AlexaFluor 568 goat anti-rabbit, 1:100), PV (mouse anti-PV, 1:5000, 

Sigma; AlexaFluor 405 goat anti-mouse, 1:100) and vasoactive intestinal peptide (VIP, 

guinea pig anti-VIP, 1:1000, Peninsula Labs; Fluorescein goat anti-guinea pig, 1:200).  

Sections were incubated in primary antibody solution for SS, PV and VIP on the shaker 

overnight at room temperature (10%NGS, 2%BSA, 0.5%TritonX-100/TBS).  Sections 

were washed in TBS, incubated in secondary antibody solution for three hours on the 

shaker at room temperature (10%NGS, 2%BSA, 0.5%TritonX-100).  Sections were 

mounted on unsubbed slides and coverslipped with Prolong Anti-fade mounting medium.  

Images were obtained using a Leica TCS-SP2 AOBS confocal laser scanning microscope 

at the Virginia Commonwealth University Department of Anatomy and Neurobiology 

Microscopy Facility.   
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Results 

 

Classification of cortical neuronal subtypes 

Whole cell recordings were made in current clamp from neurons in layer V of 

control and PMG cortex.  Cells were depolarized with a series of currents (400 ms 

duration step pulse), eliciting low and high frequency trains of action potentials (Fig. 

2.1).  Within PMG cortex, we observed a range of neuronal action potential firing 

patterns that was similar to what was seen in control cortex.  A number of previously 

published studies have used these characteristic patterns to identify interneuron subtypes 

(13; 15; 27; 28; 131; 169; 170; 367).  Based on firing patterns, the recorded cells were 

placed into one of three groups; pyramidal neurons (Fig. 2.1A,B), FS interneurons (Fig. 

2.1C), or LTS interneurons (Fig. 2.1D).  Some neurons that were initially selected as 

potential interneurons based on the DIC image prior to recording showed firing patterns 

similar to pyramidal cells, so we have called these “suspected pyramidal cells” (Fig. 

2.1B).  To help classify these cells, the firing patterns from pyramidal cells identified in a 

separate study were used here for comparison (Fig. 2.1A).     

A quantitative confirmation of this pattern-based group assignment is shown in 

figure 2, where total adaptation is plotted against the amplitude of the first AHP minus 

the amplitude of the last AHP for individual cells (AHP difference).  Adaptation of action 

potential firing frequency is commonly used to distinguish LTS from FS interneurons 

(28; 169).  AHP difference has also been shown to reliably distinguish pyramidal cells 

from LTS interneurons (28).  In order to confirm that this measure could be used in our 
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data to separate LTS cells from the pyramidal cells mistakenly recorded while looking for 

interneurons, we included the previously identified pyramidal cells in this plot as well.  

This graph shows a clear demarcation between three neuronal cell types (pyramidal, FS, 

LTS) for both control and PMG populations (Fig. 2.2).  Using this methodology, several 

cells were not classified as FS, LTS, or pyramidal cells.  The AHP difference indicated 

that these cells were unlikely to be pyramidal, but their adaptation ratio did not clearly 

align them with one of the two interneuron subpopulations.  It is likely that these cells 

represent one or more additional subtypes of interneurons that are beyond the scope of 

this study.  Additionally, the “suspected pyramidal cells” clearly segregated with the 

group of known pyramidal cells (Fig. 2.2).   

 

Intrinsic properties of cortical neuronal subtypes 

A number of intrinsic properties have been useful in differentiating interneuron 

subtypes (60; 61; 169; 172).  Here we have made the same measurements as Cauli et al 

(60; 61), as they had the most extensive list of properties that clearly separated cell types.  

This analysis allows us to determine if the intrinsic properties that differentiate 

interneuron subtypes are altered in PMG cortex.  It also confirms whether each action 

potential firing pattern correlates with a specific array of intrinsic properties in PMG 

cortex as it does in control.  For control cells, our values were very similar to those 

reported by Cauli et al in most cases, including first and second action potential duration, 

percent increase in action potential duration, first and second afterhyperpolarization 

amplitudes, and relative values for early adaptation ratio (Table 2.1).  Our LTS cells were 
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similar to their RSNP-SS interneurons.  There were some dissimilarities between our 

values and Cauli’s for accommodative hump, minimal firing frequency and time of 

minimal firing frequency.  All of these discrepancies are likely due to the difference in 

the length of our depolarizing step (400 msec) compared to theirs (800 msec).   In 

addition, we did not restrict our calculation of minimal frequency to sweeps that began 

with frequencies of 100 Hz or more.  However, even with these differences, minimal 

firing frequency showed the same relative differences between FS and LTS cell 

populations in our data (LTS significantly lower than FS, Table 2.1) as FS and RSNP-SS 

did in Cauli’s.  The other measures that distinguished FS and LTS interneurons within the 

control group were the first and second action potential duration, percent increase in 

action potential duration, AHP peak, early and late adaptation ratios, and accommodative 

hump (Table 2.1, Fig. 2.3).   

 

Pyramidal cell intrinsic properties 

A previous study of layer II/III pyramidal neurons in freeze-lesioned microgyral 

cortex found that cells in lesioned cortex exhibited slower action potentials compared to 

control, suggesting delayed maturation of this intrinsic property (201).  Similarly, we 

found that in a train of action potentials, the half-width of the second action potential was 

wider for layer V pyramidal neurons in PMG cortex compared to control (Fig.2.3).  For 

other measures, including maximum rate of rise or decay, or primary F/I slope, we found 

no differences between control and PMG layer V pyramidal neurons (Table 2.2), in 

contrast to previous findings in layer II/III.   
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Interneuron subtype identity is maintained in malformed cortex 

For a number of intrinsic properties, there was no difference between control and 

PMG interneurons, including the first and second action potential duration, percent 

increase in this duration, first and second AHP duration, early and late adaptation ratios, 

accommodative hump, minimal frequency and time for minimal frequency (Table 2.1, 

Fig. 2.3).  The measures that distinguished FS and LTS interneuron subtypes in control 

cortex also distinguished these subtypes in PMG cortex (Table 2.1).  Some of these 

parameters, including action potential half width and AHP amplitude have repeatedly 

been used to distinguish these two subtypes in normal neocortex (60; 61; 169; 265). 

The intracellular content of interneurons provides an additional basis for subtype 

identification.  Molecular markers PV, SS, calbindin (CB), calretinin (CR) and VIP are 

each found within selective subpopulations of interneurons (173; 174; 184).  These 

identifiers are often correlated with particular morphologies and electrophysiological 

characteristics (61; 173).  One helpful feature of these markers for distinguishing 

interneuron subtypes is that some of them are present in non-overlapping populations of 

interneurons (PV, SS, VIP, 175).  These markers are present early in development (152) 

and therefore may be a useful tool to assess whether the path of neuronal differentiation 

is altered during the formation of microgyria.  Therefore, we addressed the specific 

question of whether these markers were also found in non-overlapping populations in 

PMG cortex.  The quantitative assessment of the numbers of neurons has previously been 

done for both PV  (288) and  SS (250) and is beyond the scope of this analysis, since we 
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are concerned here with interneuron identity rather than number.  High power z-stack 

images show that no cells contained more than one of the immunohistochemical labels in 

either control or PMG cortex (Fig. 2.4H,L,P,T).  This finding was confirmed by 

examining twelve separate fields in each of two control and two freeze-lesioned brains.  

In no case was an overlap of any of the three markers present within a single cell.  High 

power images in control cortex show that PV-stained cells had a rounded somata and 

multipolar morphology typical of basket cells (Fig. 2.4E,I).  In PMG cortex, the 

morphology of PV cells is similar, although individual neurons are less heavily stained, 

with less clear dendritic arbors.  In both control and PMG cortex, SS-stained neurons had 

ovoid somata typical of bipolar neurons (Fig. 2.4F,J,N,R).  VIP neurons were less 

prevalent, but no differences in morphology were evident between control and PMG 

cortex.   

Dendritic and axonal morphology can also be used to distinguish interneuron 

subtypes.  While not all cells recorded and filled with biocytin can be recovered in 

subsequent processing, in this study dendritic and/or axonal morphology was clear in 40 

control and 43 PMG neurons from coronal slices.  Quantitative examination of this 

morphology will be performed in a separate study.  Here we have made the following 

qualitative classification of cell morphologies: (1) pyramidal neurons having a clear 

apical dendrite (large, single dendrite directed toward the pia); (2) bipolar neurons having 

multiple dendrites and/or axons that project vertically, typically both towards the pia and 

towards the white matter, and typically crossing into other laminae; and (3) basket 

neurons that have a round field of dendritic projection (approximately equal vertical and 
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horizontal distance of dendritic projection) within layer V.  Clear examples of all of these 

cell types were found in PMG cortex (Fig. 2.5).  After classification of the morphological 

type, this was compared to the electrophysiological type.  In the majority of cases for 

both control and PMG cortex, there was a match.  In control cortex, 77% of 

electrophysiologically-identified pyramidal neurons had a clear apical dendrite.  The 

same was true for 89% of PMG pyramidal neurons.  In control cortex, 92% of LTS 

neurons had a clear bipolar morphology, while this was true for 69% of PMG neurons.  In 

control cortex, 60% of FS cells had clear basket cell morphology, and this was true for 

64% of PMG FS neurons.  There were 2 cells in each of control and PMG cortex whose 

morphology could not be clearly characterized. 

 

Interneuron firing rate is altered in PMG cortex 

Although many intrinsic properties are unchanged in PMG interneurons compared 

to control, several characteristics were altered that may affect inhibitory tone in 

malformed cortex.  Interestingly, these characteristics were differentially altered for LTS 

and FS interneurons.  In PMG cortex, the maximum firing frequency is decreased for FS 

interneurons compared to control FS cells (Fig. 2.6A,C).  In contrast, PMG LTS 

interneurons have an increased maximum frequency compared to control LTS cells (Fig. 

2.6B,C).  These respective changes result in maximum firing frequencies for LTS and FS 

interneurons that are not different from each other in PMG cortex, while this measure is 

significantly different for the two interneurons subtypes in control cortex.  The increase 

in firing frequency for LTS interneurons may be due, in part, to the decreased duration of 
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the first AHP (Fig. 2.6D,F).  In particular, the early action potentials fire at a faster rate in 

PMG LTS cells than in control.  Despite the faster initial firing, adaptation still occurs in 

PMG LTS cells.  The shorter AHP and higher frequency at the beginning of the train 

contribute to the increase in total adaptation observed in PMG compared to control LTS 

interneurons (Fig. 2.6E,G).  LTS interneurons also had a slightly less negative resting 

potential in PMG compared to control (Table 2.2).  FS interneurons in PMG cortex fired 

action potentials with slightly larger amplitudes than FS cells in control cortex (Table 

2.2).      

 

Discussion 

Based on intrinsic properties, pyramidal, FS and LTS neuronal subtypes can 

clearly be distinguished in control cortex (15; 61; 131).  Here we have found that this still 

holds true for malformed, epileptogenic cortex (Fig. 2.2B).  Thus the identity of these 

neuronal subtypes is not altered by a developmental insult in the late stages of cortical 

migration.  While unique cell types can still be distinguished, some intrinsic properties 

are altered in the PMG.  This includes a slowing of the second action potential in a train 

for pyramidal cells, suggesting that this property is at an immature state.  The changes 

also included a decrease in the maximum firing frequency for FS, but an increase in this 

rate for LTS interneurons.  Both of these changes are unlikely to be explained by the 

same alteration in, for instance, potassium channels.  These results demonstrate that 

neuronal subtypes are in fact differentially altered during the formation of a microgyrus 

and the adjacent hyperexcitable region of neocortex.  In addition, the changes in 
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maximum firing rate suggest that the ratio of synaptic input from FS versus LTS 

interneurons could be altered, with that from LTS increasing while that from FS 

decreases.  Whether this occurs in individual neurons and how it might contribute to 

epileptiform activity requires further exploration. 

Maintenance of interneuron subtypes in PMG suggests that differentiation 

proceeds normally after the lesion is made, or that most mechanisms defining cell type 

are complete in layer V prior to the lesion and are unaffected by it.  This is consistent 

with our current understanding of interneuron subtype determination.  First, the cells that 

will eventually populate the PMG cortex are already born when the lesion is induced 

(291). Secondly, interneurons likely receive their subtype-instructive information at the 

place of origin, rather than from signals during migration (364).  The source of cortical 

interneurons in rodents includes the medial (MGE), lateral and caudal ganglionic 

eminences (6; 237; 363), with the MGE serving as the major point of origin for cells 

expressing somatostatin and parvalbumin (370).  Parallel electrophysiological findings 

indicate that the two predominant mature interneuron types formed from the MGE exhibit 

firing characteristics of FS and LTS cells (54).  In the MGE, prenatally active 

transcription factors are important for determining the eventual interneuron fate, 

identified by the expression of PV and SS (6; 97; 332).   

It is clear from our data that selective intrinsic properties may be altered, leaving 

others intact.  Previously, an altered number of PV neurons in deep layers has been 

demonstrated in PMG cortex (288), while the number of SS interneurons appears 

unchanged (250).  A selective change in particular interneuron subpopulations has been 
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observed in other epilepsy models as well.  Typically, it is the PV neurons that are 

selectively decreased in neocortical models (266; 352), while SS-labeled neurons are 

selectively reduced in some hippocampal temporal lobe models (47; 119; 328), as well as 

in human temporal lobe epilepsy (239).  The expression of PV in the rodent is not 

observed with immunohistochemistry until the second postnatal week (4; 322), and may 

be influenced by factors such as early activity (251), dopamine (264) and estrogen (292).  

If the observed decrease in PV-stained neurons in the PMG (288) represents a 

developmental alteration in protein expression, rather than simply the loss of some 

GABAergic-PV cells, it is possible that incorrect protein expression or aberrant overlap 

of several proteins within the same cell could occur.  This would result in an altered 

identity based on intracellular contents.  Typically in epilepsy studies, changes in single 

intracellular markers for interneurons have been studied without determining whether 

there is any change in the co-localization of these markers.  Here we have specifically 

shown that the lack of co-localization of PV, SS and VIP in control tissue is maintained 

in the PMG (Fig. 2.4), further suggesting that this aspect of interneuron subtype identity 

is preserved. 

In addition to the expression of calcium-binding proteins (152), dendritic 

outgrowth (353) and some complex firing properties of interneurons (197) have reached 

near-adult levels by the end of the second postnatal week.  Firing properties and action 

potential characteristics of pyramidal cells also approach mature values by the second and 

third postnatal weeks (118; 220).  Alterations in one or more of these properties during 

development may contribute to the abnormal activity seen in epileptogenic cortex (25).  
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This appears to be true in human dysplastic cortex, where the presence of dysmorphic, 

immature cells indicate disruption of maturational processes (62; 64).  For example, 

cytomegalic neurons demonstrate abnormal membrane properties (64) and the ability to 

generate calcium spikes with little provocation, possibly suggesting a role in epileptiform 

activity (63).  It is often difficult to discern whether intrinsic property alterations cause 

the observed pathologies or occur in response to it, but neuronal alterations in disease 

states tend to resemble non-homeostatic changes, rather than compensatory mechanisms 

(25).  Often these changes include mis-expression of channels or subunits that are 

important for excitability or repolarization.  For example, increased neuronal activity 

(modeled with short term LTP induction or glutamate application) can cause altered 

expression of voltage-gated potassium channels (179; 228), directly affecting cellular 

excitability (228).  A lack of functional Kv2.4 channels in heterotopic neurons of the 

MAM model (56), as well as an upregulation of intrinsic bursting behavior following 

pilocarpine-induction of status epilepticus (361) both create a tendency for 

hyperexcitability.  Interestingly, the type of alteration that occurs for a given channel or 

type of current appears to depend both on the experimental model and the developmental 

state of the animal.  In immature rats (P10-11), hyperthermia-induced seizures resulted in 

an enhanced Ih (71) that contributed to hyperexcitability, while kainate seizure induction 

in more mature animals (five to six weeks) caused a decrease in Ih and the responsible 

HCN channel subunits (312).  Channel alterations likely underlie changes in firing mode 

that have also been shown to promote epileptiform activity, including the development of 

intrinsic bursting in layer V (296), increased bursting in CA1 following in utero treatment 
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with MAM (17), and a transient suppression of AHP and increased firing frequency in 

the kindling model (26).  Selke et al. (311) have also demonstrated the dual loss of one 

AHP component and adaptive firing behavior in hippocampal granule cells, causing 

transient hyperexcitability in this population.  

 

Pyramidal cell intrinsic property delayed maturation 

A number of findings have contributed to the theme of delayed maturation 

associated with malformation models (158).  In the freeze lesion/PMG model, this 

includes delayed expression of mature GABA subunits (89; 142) and chloride 

transporters (316), as well as persistent radial glia (290) and Cajal-Retzius cells (331).  

There is previous evidence of an immature state in pyramidal cell intrinsic properties 

within layer II/III (201), and we find at least some similarities with an increased duration 

of the action potential in the layer V pyramidal neurons recorded here (Fig. 2.3).  

Typically, action potentials become shorter in duration and larger in amplitude by the end 

of the second postnatal week (118; 220).  Accompanying this change is a larger action 

potential peak and a faster rate of rise and fall (220).  Although we did not observe as 

many changes in the pyramidal cell intrinsic properties, this may reflect the older age of 

the animals at the time of recording in the previous study or a true difference between 

laminae.  In any case, both layers show an increased duration of the action potential 

under some conditions.  Prolonging the action potential could limit high frequency firing 

or bursting, however, and may actually have an anti-epileptogenic effect in PMG (38).   
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Differential alterations in interneuron subtypes 

While the FS and LTS subtypes have maintained their identity in PMG cortex, 

specific changes in their firing frequencies may represent altered efficacy for each cell 

type, with interesting implications for interneuron function, as well as potential 

underlying subcellular mechanisms.  In particular, PMG LTS interneurons have an 

increased maximum firing frequency (Fig. 2.6).  One possible mechanism for increased 

frequency is the elevated expression of voltage-gated potassium channels that permit 

rapid re-polarization responsible for high-frequency firing.  These channels normally 

have a differential expression pattern in neuron subpopulations for both neocortex (68; 

349) and hippocampus (46).  The rapid action potential firing capabilities of FS cells may 

rely, at least in part, on the expression of a specific potassium channel, Kv3.1 (72; 349).  

Aberrant expression of channels like this could endow LTS cells with increased firing 

capability.  A decreased expression of this channel could contribute to retarding the speed 

with which FS interneurons fire in the PMG. However, adaptive behavior typical of LTS 

cells in normal cortex still occurs in PMG, and is actually increased due to a higher initial 

firing frequency (Fig. 2.6).  

Morphological properties associated with specific interneuron populations 

indicate that tasks performed by each inhibitory population are likely assigned to a 

specific subtype.  LTS interneurons that are capable of firing at an increased rate could 

create a more powerful inhibitory effect, perhaps augmenting their ability to synchronize 

surrounding neurons.  Even in the absence of excitatory synaptic input, networks of LTS 

cells can exhibit synchronous, oscillatory behavior, resulting in synchronous IPSPs in 



www.manaraa.com

 

61

neighboring regular-spiking cells (27).  Furthermore, inhibitory input to dendrites can 

alter the phase of dendritic spiking (178), potentially synchronizing the probability and 

timing of excitatory events in the dendrites that will ultimately influence cellular output. 

Based on the vertical orientation and dendrite-targeting of the LTS cells (170; 172; 175), 

this means that these cells may produced interlaminar, intracolumnar synchrony.  At the 

same time, the lower maximum firing frequency observed in FS interneurons could result 

in a less powerful horizontal or intercolumnar inhibition.  Both of these changes could 

sway the balance of inhibition to allow the increased excitatory input (160) to contribute 

to unregulated synchronous firing.  It is yet to be determined whether or not increased 

LTS firing is sufficient to synchronize cortical activity to the extent necessary to promote 

epileptiform activity.  This is currently being investigated through selective activation of 

LTS interneurons.   

Taken together, these data suggest that the differentiation of neuronal subtypes 

proceeds relatively normally during reorganization of the cortex induced by focal loss of 

deep layer neurons during the time of cortical migration.  However, subtle changes in the 

firing behavior of LTS and FS interneurons may supply enhanced interlaminar synchrony 

and suppressed intercolumnar inhibition, ultimately contributing to hyperexcitability in 

malformed cortex. 
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Table 2.1 Intrinsic properties of layer V interneurons and pyramidal cells. 
Electrophysiological 

Parameter 
FS 

Control (n=34) 
PMG (n=30) 

 LTS 
Control (n=33) 
PMG (n=23) 

Pyr 
Control  (n=29) 

PMG (n=22  

1st spike duration, ms 
 

0.77 ±0.04 
0.81 ±0.06 

 
§ 
§ 

 
1.08 ±0.05 
1.03 ±0.05 

 
1.86 ±0.08 
2.03 ±0.12 

2nd spike duration, ms 
 

0.79 ±0.04 
0.84 ±0.07 

 
§ 
§ 

 
1.23 ±0.06 
1.17 ±0.06 

 
2.35 ±0.13 

2.84 ±0.22** 

Duration increase, % 
 

2.8 ±0.6 
2.7 ±1.0 

 
§ 
§ 

 
13.4 ±1.4 
12.6 ±1.7 

 
25.8 ±4.4 
39.6 ±6.9 

1st spike AHP, mV 
 

-11.8 ±0.6 
-11.5 ±0.6 

 
§ 
§ 

 
-8.6 ±0.6 
-7.2 ±0.9 

 
-3.9 ±0.7 
-3.3 ±0.6 

2nd spike AHP, mV 
 

-14.9 ±0.6 
-14.6 ±0.6 

 
§ 
§ 

 
-11.2 ±0.6 
-10.0 ±0.9 

 
-14.0 ±0.8 
-14.8 ±0.8 

Early adaptation ratio 
 

0.08 ±0.02 
0.09 ±0.02 

  
0.11 ±0.02 
0.07 ±0.01 

 
0.22 ±0.02 
0.16 ±0.03 

Late adaptation ratio 
 

0.86 ±0.02 
0.83 ±0.01 

 
§ 
§ 

 
0.55 ±0.03 
0.55 ±0.04 

 
0.77 ±0.02 
0.76 ±0.01 

Accommodative hump, 
mV 

 
4.8 ±0.6 
4.3 ±0.6 

 
§ 
§ 

 
1.5 ±0.2 
2.2 ±0.6 

 
3.4 ±1.1 
3.1 ±1.3 

Minimal frequency, Hz 
 

32.4 ±3.6 
25.5 ±3.3 

 
§ 
§ 

 
9.2 ±0.6 

11.6 ±2.3 

 
6.3 ±0.3 
6.7 ±0.5 

Time for min. freq., ms 
 

188 ±21 
171 ±17 

  
201 ±14 
170 ±16 

 
175 ±9 
176 ±12 

Values are means ±SEM. n, number of cells; FS, fast-spiking cells; LTS, low-threshold spiking cells; Pyr, 
pyramidal cells; Student’s t-test between control and PMG for each group, ** indicates p <0.05., Student’s t-
test between FS and LTS in control and PMG populations, § indicates p <0.05. 
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Table 2.2  Intrinsic properties of layer V interneurons and pyramidal cells. 

Electrophysiological 
Parameter 

FS 
Control  
PMG  

LTS 
Control  
PMG  

Pyr 
Control  
PMG  

 
Resting membrane 
potential, mV 

-62.7 ±6.3 (31) 
-63.0±7.3 (24) 

-55.4 ±4.2 (31) 
-58.7±5.2 (19)** 

-56.2 ±5.3 (28) 
-57.3±8.2 (22) 

 
Input resistance, MΩ 
 

120 ±7 (32) 
123 ±7 (25) 

191 ±16 (32) 
173 ±22 (21) 

121 ±16 (29) 
140 ±18 (21) 

 
Spike amplitude, mV 
 

81.8 ±1.1 (34) 
85.3±1.3 (30)** 

99.2 ±1.4 (33) 
96.3 ±1.7 (23) 

103.6 ±0.8 (28) 
102.4 ±1.0 (16) 

 
Max rate of rise, V/s 
 

256 ±12 (34) 
253 ±13 (30) 

244 ±13 (33) 
239 ±11 (23) 

287 ±11 (28) 
272 ±13 (16) 

 
Max rate of decay, V/s 
 

117 ±7 (34) 
115 ±9 (30) 

85 ±4 (33) 
84 ±5 (23) 

42 ±2 (28) 
39 ±2 (16) 

 
dV/dt ratio 
 

2.3 ±0.1 (34) 
2.4 ±0.1 (30) 

2.9 ±0.1 (33) 
2.9 ±0.1 (23) 

6.9 ±0.2 (28) 
7.1 ±0.3 (16) 

 
Primary F/I slope (Hz/nA) 
 

407 ±25 (34) 
400 ±23 (30) 

471 ±33 (33) 
481 ±41 (23) 

87 ±18 (28) 
97 ±20 (16) 

All data are expressed as means ±SE  (n cells). Student’s t-test was used to compare control and PMG 
values within each group, ** indicates p <0.05. 
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Figure 2.1  Example traces of neuronal responses to a series of current steps.  Firing 
patterns recorded in control (1,3) and PMG (2,4) cortex in response to depolarizing 
current.  Traces are shown for low frequency responses to small current steps (3,4) and 
high frequency responses to larger steps in the same cells (1,2).  These traces demonstrate 
patterns typical for: A. Pyramidal cells identified in horizontal slices; B. Suspected 
pyramidal cells recorded in coronal slices; C. FS; and D. LTS interneurons recorded in 
coronal slices. 
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Figure 2.2  Identification of neuronal subpopulations based on action potential 
firing properties.  The difference between first and last AHP amplitudes is plotted 
against total adaptation ratio, which is the frequency of the first two action potentials 
divided by the frequency of the last two action potentials.  Each symbol shows the result 
for a single cell.  A. Control cells.  B. PMG cells.  Five cell types are represented: 1) FS = 
fast-spiking; 2) LTS = low threshold-spiking; 3) pyramidal; 4) Suspected pyramidal 
(initially expected to be interneurons but characterized as pyramidal cells based on action 
potential characteristics); 5) unknown cell type (non-pyramidal, unclassified 
interneurons).   
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Figure 2.3  Comparison of action potential half-width in pyramidal, FS and LTS 
cells.  A. Example traces from pyramidal cells in control (1) and PMG (2).  B. Enlarged 
versions of the first (1) and second (2) action potentials from the traces shown above in 
A, for control (gray, thicker line) and PMG (black, thinner line).  C. Mean second action 
potential half-width in control (gray) and PMG (black) for 29 and 22 pyramidal cells, 34 
and 30 FS cells, and 33 and 23 LTS cells, respectively.  * = t-test, p <0.05.  
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Figure 2.4  Confocal images of parasagittal sections at low power (A-D) and high 
power (E-T) showing immunohistochemistry to visualize parvalbumin (blue), 
somatostatin (red), and vasoactive intestinal peptide (green).  To prevent cross-talk 
between channels, a sequential scanning procedure was used.  Panel A, overlay of all 
three fluorophores in control cortex.  Panels B-D, overlay of all three fluorophores in 
PMG cortex at locations within, near, and distant from the microgyrus, respectively.  
Panels E-H, images of each fluorophore separately followed by overlay of the three 
(same visual field) taken from layers II/III in control cortex.  Panels I-L, images taken 
from layer V in control cortex.  Panels M-P, images taken from layer II/III in PMG 
cortex.  Panels Q-T, images taken from layer V in PMG cortex.  For E-T, images are z-
stacks with a 1.5 µm slice.  Scale bar in D for A-D = 200 µm, scale bar in T for E-T = 20 
µm.   
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Figure 2.5 Confocal images of individual cells that were recorded and later 
visualized with fluorescein-conjugated biocytin.  All cells are from PMG cortex and 
are examples of A. bipolar, B. basket and C. pyramidal cell morphology. Scale bar = 10 
µm. 
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Figure 2.6  Altered action potential firing properties in neuronal subpopulations.  A.  
Example traces from FS cells in control (1) and PMG (2) demonstrating decreased 
maximum firing frequency in PMG.  B.  Example traces from LTS cells in control (1) 
and PMG (2) demonstrating increased maximum firing frequency in PMG.  C. Maximum 
firing frequency in pyramidal, FS and LTS cells.  D. Example traces of initial action 
potential firing from typical control (1) and PMG (2) LTS cells, showing decreased AHP 
duration in PMG.  E.  Full trains of action potentials showing adaptation in control (1) 
and PMG (2) LTS cells, increased in PMG.  F.  Duration of AHP. G. Average total 
adaptation.  Control (gray) and PMG (black) for 29 and 22 pyramidal cells, 34 and 30 FS 
cells  and 33 and 23 LTS cells, respectively.  * = t-test, p <0.05. 
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Chapter 3 

Excitatory Synaptic Input to Interneurons is Differentially Affected in Malformed 

Epileptogenic Cortex, Based on Subtype 

 

Introduction 

Many of the existing anti-epileptic drugs (AEDs) are ineffective when used alone 

to treat seizures (187), especially for children who can attribute their seizures to cortical 

malformations (263).  Polymicrogyria, a developmental malformation involving the focal 

loss of cortical deep layers, is associated with epilepsy and often causes intractable 

seizures that require surgical intervention (186; 246; 318).  Selecting a surgical site is 

difficult; however, as the epileptogenic region of cortex extends beyond the anatomical 

malformation in many of these patients (70; 137; 139). In addition, the underlying 

mechanism responsible for hyperexcitability in polymicrogyria is not fully known. 

 In the freeze-lesion model of polymicrogyria, not only do the histological changes 

in the rat mirror those of the human (99; 100) but an analogous electrophysiological 

abnormality is also reliably demonstrated (156; 157; 202).  About two weeks after the 

lesion is made, epileptiform activity can be evoked consistently from the cortex 

surrounding the lesion (156).  Abnormal connectivity has been demonstrated, suggesting 

that fibers that originally targeted the lesioned cortex have been redirected to the 

surrounding paramicrogyral area, producing hyperinnervation with glutamatergic 
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afferents (159; 160; 286) .  We have previously demonstrated a functional increase in 

excitatory input to cortical PMG pyramidal cells prior to the onset of epileptiform activity 

(375).  The timing of this indicates that increased excitation alone does not account for 

the abnormal activity, and a concomitant alteration of inhibitory cells may be necessary 

to “unmask” the network hyperexcitability that is observed at P12.  There is increased 

excitatory input to at least some inhibitory postsynaptic targets as well (160), but 

measures of overall inhibition do not demonstrate a clear change in this model (268; 

269).  Individual interneuron subtypes may be differentially affected by the aberrant 

innervation in a way that is not obvious when inhibitory activity is examined as a whole.  

This would mean that selective and specific connectivity, not random hyperinnervation, 

is responsible for the generation of epileptiform activity.   

Previous work has provided evidence of selective alterations that occur in both the 

human condition and in epilepsy models.  Evaluation of hippocampal tissue from patients 

with temporal lobe epilepsy (279) and both the kainic acid (49) and kindling models 

(321) revealed the presence of fewer somatostatin (SS)-immunopositive cells than 

control.  Also in the kainic acid model, a subset of parvalbumin (PV)-immunopositive 

cells was selectively spared from injury (37).  With regard to neocortex, a decrease in the 

number of PV-immunopositive cells has been demonstrated in the TISH model, 

accompanied by a lower frequency of sIPSCs (352).  In the freeze-lesion model, Rosen et 

al. have shown a selective decrease in the number of PV-immunopositive neurons in this 

model (288; but see 308), while Schwarz et al. have demonstrated an increase in the 

number of calbindin (CB)-stained cells (308).  In contrast to the hippocampal studies, the 
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number of interneurons containing SS appears to remain unchanged at the onset of 

hyperexcitability (250).  Some intrinsic properties of LTS and FS interneurons also 

appear to be differentially altered in lesioned cortex (Chapter 2).  In conjunction with 

these results, is important to determine whether there are corresponding functional 

alterations that occur in specific inhibitory cell populations. 

The network of interneurons does not create a straightforward “off” switch, and 

different interneuron subtypes have unique roles in neocortex (36; 209).  For example, FS 

interneurons that express PV have basket cell or chandelier cell morphology (170; 172).  

Their axonal arbors have an intralaminar distribution that targets adjacent somata (175), 

making them well-suited to deliver powerful inhibition and prevent the spread of 

excitation to neighboring cortical columns.  LTS interneurons that express SS have 

bipolar morphology and a vertical bias (170; 172).  These cells target distal dendrites for 

synapse formation (175), and their distance from the site of action potential initiation 

allows them to function in a modulatory capacity.  Interestingly, there are situations in 

which dendritic and somatic inhibition may be differentially altered.  In the pilocarpine 

model of temporal lobe epilepsy, for instance, a specific decrease in SS-immunopositive, 

dendrite-targeting interneurons was observed in the hippocampus, paralleled by a 

selective decrease in functional dendritic, but not somatic, inhibition of pyramidal cells 

(80).  The hypothesis addressed with the present study is that a similar phenomenon 

occurs in PMG cortex, namely that dendrite-targeting LTS cells demonstrate increased 

efficacy, while soma-targeting FS cells have less.  These alterations would theoretically 

leave overall inhibition intact while producing functional, pro-epileptogenic 
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consequences specific to each cell type.  For example, an increase in LTS/SS cell 

function might increase columnar synchrony.  An augmentation of this nature could be 

achieved by increasing the excitatory input to LTS cells.  In fact, this type of change was 

noted in the pilocarpine model, where a greater number of action potential-driven events 

was observed in the cells that provide somatic inhibition (80).  In order to determine if 

such a change occurs in PMG neocortex, excitatory postsynaptic potentials were recorded 

from both FS and LTS interneurons. 

 

Materials and Methods 

 

Freeze lesion surgery 

Freeze lesions were made as described previously (375).  Rat pups aged P1 were 

anesthetized by placing them in ice for 4-6 minutes.  An incision was made to expose the 

skull overlying somatosensory cortex of the left hemisphere.  The freeze probe, 

consisting of a copper bar with a 2x5 mm rectangular tip cooled to -50 ◦C, was applied to 

the exposed skull for 5 seconds.  The skin was sutured, the pup warmed and returned to 

the dam.   

 

In vitro slice preparation 

Lesioned animals and unoperated control rats aged P12-17 were anesthetized with 

isoflurane and decapitated.  The brain was quickly removed and placed into cold (4◦C) 

sucrose slicing solution containing (in mM): 2.5 KCl, 1.25 NaH2PO4, 10 MgCl2, 0.5 
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CaCl2, 26NaHCO3, 11 glucose, and 234 sucrose.  Coronal sections were cut at a thickness 

of 300µm and transferred to a holding chamber filled with artificial cerebrospinal fluid 

(aCSF) containing (in mM): 126 NaCl, 3 KCl, 1.25 NaH2PO4, 2 MgCl2, 2 CaCl2, 26 

NaHCO3, and 10 glucose.  Sections were maintained at 34◦C for 45 minutes and at room 

temperature thereafter.  All solutions were perfused with 95%O2/5%CO2, maintaining pH 

at 7.4.   

 

Electrophysiology 

The whole-cell patch clamp technique was used to record spontaneous (s), 

miniature (m) and evoked (e) excitatory postsynaptic currents (EPSCs) from layer V 

interneurons in somatosensory cortex.  Interneurons were differentiated from pyramidal 

cells under DIC by their small, rounded or oblong somata and lack of clear apical or basal 

dendrites.  Recordings were made from an area of cortex 0.5-1.5 mm from the sulcus and 

from homotopic cortex in controls.  The intracellular solution used for recordings 

contained (in mM): 130 K-gluconate, 10 Hepes, 11 EGTA, 2.0 MgCl2, 2.0 CaCl2, 4 Na-

ATP, and 0.2 Na-GTP.  With this solution ECl- = -71.5 mV.  All voltage clamp recordings 

were made at a holding potential of -70 mV, allowing excitatory events to be recorded in 

isolation.  The osmolarity and pH of the intracellular solution were adjusted to 275-285 

mOsm and pH 7.3, respectively.  Recordings were made in aCSF at 30-32◦C.  For some 

recordings, modified aCSF solution was used to increase the probability of 

neurotransmitter release.  This solution contained, (in mM): 126 NaCl, 3 KCl, 1.25 

NaH2PO4, 0.5 MgCl2, 3.5 CaCl2, 26 NaHCO3, and 10 glucose.  For miniature events, 
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tetrodotoxin (TTX, 1 µM) was added to the bathing solution.  Recordings where made 

after nearby extracellular stimulation could no longer evoke a postsynaptic current (~5 

min).  For evoked EPSCs, a glass electrode filled with 1M NaCl was placed in the slice at 

a 250 µm horizontal distance from the recorded cell and used to apply a series of 

currents.  Threshold was determined as the smallest amount of current able to elicit a fifty 

percent response rate at a pulse width of 20 µsec.  Stimulus intensity was changed by 

increasing pulse duration while maintaining the threshold level of current.  A series of 

five intensities was applied (1x, 2x, 4x, 8x and 16x threshold).  For each intensity level, 

the responses to three stimulus presentations were averaged.  A 50 Hz train of four 

stimuli was applied to the slice using the maximum stimulus intensity (16x threshold).  

The responses to five stimulus train presentations were averaged for individual cells.  

 

Data analysis 

Recordings were made with a Multiclamp-700A amplifier (Axon Instruments), 

and only those with an access resistance less than 23 MΩ were accepted for analysis.  

Recordings were terminated if the resistance increased more than 20% or if there was 

other evidence of declining cell health.  Data was digitized online (20 kHz) using 

software from Axon Instruments.  Data analysis for voltage clamp experiments was 

performed using MiniAnalysis (Synaptosoft).  Some intrinsic parameters were measured 

using Clampfit (Axon Instruments).  Evoked data was analyzed using Igor software 

(Wavemetrics).  Measurements are reported as means ±SEM.  Student’s t-test (Excel), z-

test (SigmaStat), one way ANOVA and repeated measures ANOVA (SPSS) were used to 
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test for significance where appropriate, and p <0.05 was considered to be significant.  

Cumulative probability plots were generated to compare control and PMG mEPSC 

interevent interval (IEI) durations for LTS, FS and overall interneuron populations.  For 

LTS, 200 events from each of nine cells with mEPSC frequencies closest to the median 

value were combined for a total of 1800 events per group.  For FS, the first 300 events 

from each of six cells were used per group.  For overall interneuron populations, 300 

events from each of 23 cells per group were used to ensure that all cell types were 

represented.  The data were fit with the exponential decay function: y = A1 exp(-x/t1) + 

y0  and the percentage of IEI values that fell below a set duration threshold was 

determined.  The Kolmogorov-Smirnov test was used to test for significance, p <0.05 

was considered to be significant.  

 

Results 

 

Excitatory input to the overall interneuron population is unchanged in PMG cortex 

Recordings were made from a total of 73 control and 59 PMG interneurons using 

the whole cell patch clamp technique.  To determine whether excitatory synaptic input is 

altered for interneurons in the freeze-lesion model, s- and mEPSCs were analyzed.  The 

sEPSC frequency ranged from 0.5- 22.3 Hz in both control and PMG populations.  This 

is similar to previously reported values for excitatory input to layer V pyramidal neurons 

(160).  Comparable ranges for sEPSC amplitude were also observed for control (11.5- 

45.4 mV) and PMG (13.9- 48.8 mV).  Mean sEPSC frequency and mean amplitude were 
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the same for events recorded from interneurons in PMG cortex compared to those in 

control (Fig. 3.1).  For mEPSCs, neither the frequency nor the amplitude of these events 

was different in PMG cortex compared to control (Fig. 3.1).  Furthermore, the frequency 

of miniature events was not significantly different from that of the spontaneous events.  

Calculated for individual cells, mEPSC frequency was 93 ±9% of sEPSC frequency in 

control and 91 ±8% in PMG.  In order to determine whether alterations occur that cannot 

be detected when all interneurons are considered together, subpopulations were examined 

separately.  

 

FS and LTS interneurons receive different amounts of excitatory input in control cortex 

To compare populations of interneurons, two groups were separated from each 

other based on firing patterns and intrinsic properties.  In a separate study of intrinsic 

properties, we have found that interneuron subtypes exist in essentially the same 

spectrum in PMG as they do in control.  We can readily separate different subtypes, as 

well as distinguish regular spiking neurons from interneurons (Chapter 2).  This was 

accomplished using two measures, (1) the difference between the peaks of the first and 

final AHPs and (2) the total adaptation ratio.  Once these groups were established, a 

number of other intrinsic properties were evaluated and found to be consistent for each 

cell type between control and PMG cortex.  Several of those measures were used here to 

confirm the classification of FS and LTS interneurons.  

Interneurons were visually identified under DIC and then assigned to a subtype 

category based on their responses to a series of depolarizing current steps producing both 
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low and high frequency firing patterns (Fig. 3.2).  LTS interneurons fired two or three 

temporally close action potentials in response to small current steps, followed by 

adapting trains of action potentials in response to increased current (Fig. 3.2A,B).  FS 

interneurons fired high frequency action potential trains with little adaptation (Fig. 

3.2C,D).  Adaptation for individual cells was plotted against action potential halfwidth, 

separating the two populations of interneurons (Fig. 3.2E,F).  Input resistance, action 

potential half width and AHP peak amplitude were also used to distinguish interneurons 

here (Fig. 3.3).  For both interneuron populations, these control measures were consistent 

with previously reported values (60; 169). 

For each interneuron subtype, levels of excitatory input were determined in 

control.  FS interneurons had a higher frequency of sEPSCs than LTS interneurons, and 

mEPSC frequency was also greater in FS cells compared to LTS (Fig. 3.4).  The 

amplitude of spontaneous and miniature events was larger in FS compared to LTS 

interneurons (Fig. 3.4), and rise time and decay for both sEPSCs and mEPSCs were faster 

in FS cells than LTS cells (Table 3.1).  These differences were maintained in PMG cortex 

(Fig. 3.4, Table 3.1). 

 

Excitatory input to interneurons is differentially altered in PMG cortex 

For LTS interneurons, the mean frequency of spontaneous events was doubled in 

PMG compared to control cortex (Fig. 3.4).  This occurred without alteration of the mean 

amplitude (Fig. 3.4F), rise time, or decay for these events (Table 3.1).  There was also a 

higher mean frequency of miniature events in PMG LTS interneurons compared to 
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control, but no difference in amplitude (Fig. 3.4G,H).  Interestingly, neither the 

spontaneous nor the miniature event mean frequency was different in the PMG FS cell 

population compared to control (Fig. 3.4).  To take into account the variation within each 

cell type, the range of frequencies was plotted with both the mean and median values for 

that group (Fig. 3.5A-B).  As expected for the PMG LTS population, the upper limit of 

the range was increased, although the minimum value was the same (Fig. 3.5A).  Not all 

of the cells had a higher frequency in the LTS population, but both the mean and median 

values were increased.  In contrast, the action potential half-width, an intrinsic property 

and defining quality of interneuron subtype, were unaffected (Fig. 3.5A).  Interestingly, 

neither the range of frequencies nor the mean frequency was different for PMG FS cells 

compared to control; however, the median value for mEPSC frequency was lower in the 

PMG FS population.  As with the LTS interneurons, the action potential half-width 

measurement remained unchanged (Fig. 3.5B).   

Cumulative probability plots were generated (See Materials and Methods) to 

compare the IEI distribution for the cells with mEPSC frequencies closest to the median 

value in each group (Fig. 3.5C-E).  Not surprisingly, there was a significant separation 

between the distribution of the IEIs for control and PMG LTS cells (Fig. 3.5C).  To 

investigate this difference further, the percentage of IEIs that were shorter than the set 

threshold of two seconds was compared between control and PMG.  While 47% of the 

IEIs in control LTS cells were shorter than two seconds, 85% of IEIs in PMG LTS cells 

fell below this threshold.  Unexpectedly, there was also a significant separation between 

the control and PMG populations of FS cells (Fig. 3.5D).  Due to the higher mEPSC 
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frequency observed in FS cells, a 400 msec threshold was used.  For control cells, 75% of 

the IEIs were shorter in duration than the threshold, while for PMG FS cells, the IEIs 

were typically longer, with only 42% of the IEIs falling below the threshold level.  A 

cumulative probability plot was also generated for interneurons without separating them 

by subtype, and the distribution was similar for both control and PMG populations (Fig. 

3.5E).  A 900 msec threshold was set for these IEIs, with 66% and 46% falling below this 

level for control and PMG, respectively.   

 

Evoked responses 

In response to a series of five stimuli with varied intensities, eEPSCs in both FS 

and LTS interneurons were graded in size relative to the increase in stimulus intensity 

(Fig. 3.6A,B).  Some cells occasionally fired action potentials at the highest stimulus 

intensities.  The mean area of the eEPSC was larger for FS interneurons than LTS 

interneurons (Fig. 3.6C).  There was no significant difference in the threshold current 

used to evoke these responses for any of the groups (Control LTS = 73 ±15 µA, Control 

FS = 65 ±15 µA, PMG LTS = 65 ±10 µA, PMG FS = 31 ±4 µA, one-way ANOVA, 

N.S.).  Time-to-peak of the eEPSC was shorter for control FS interneurons than both 

control and PMG LTS interneurons.  There was, however, no difference in the time to 

peak for PMG FS interneurons in comparison to any of the other cell groups (Fig. 3.6D).  

The presence of all-or-none variable-latency evoked activity was also evaluated for each 

cell in response to this series of stimuli.  In control, 6/22 FS cells (27%) and 5/22 LTS 

cells (23%) demonstrated this type of late activity on one or more sweeps.  In PMG, it 
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was present in 12/22 FS cells (55%) and 7/15 LTS cells (47%).  Typically, late activity 

was observed following application of the lower intensity stimuli (Fig. 3.6E,F).  The 

mean area of this activity was not different for control FS cells compared to either 

population of LTS cells, but late activity in PMG FS interneurons had a larger area than 

either control or PMG LTS interneurons (Fig. 3.6G).   

Trains of four stimuli at a frequency of 50 Hz were also applied to the slice using 

the maximum stimulus intensity established for the preceding series.  As has been 

previously reported, LTS cells demonstrated facilitating patterns, while FS cells had a 

depressive pattern (276) in response to repetitive stimulation (Fig. 3.7).  Cells were 

identified as facilitating or depressive based on the percent change in eEPSC amplitude 

between the first and fourth responses to the stimulus train.  In control, all FS cells 

showed depression, as expected (Fig. 3.7F).  However, there were four control LTS cells 

that did not show clear facilitation (19%).  In PMG, four FS cells showed a slightly 

facilitating response (18%).  Only one PMG LTS cell was not facilitating (7%).  There 

were no differences between control and PMG populations regarding the proportion of 

cells that demonstrated the expected, stereotypical response to repetitive stimuli (z-test, 

N.S.).  It is interesting to note that of the facilitating PMG FS cells, the amount of 

facilitation between the first and fourth eEPSCs (159 ±27%) was not as extensive as is 

typically seen in LTS interneurons (322 ±34% in control, 338 ±60% in PMG).  Also, 

while there was no significant difference in the characteristic response (facilitating vs. 

depressive) for either interneuron subtype, the extent of the response was altered in PMG 

cortex.  In other words, the amount of depression in PMG FS cells was slightly increased 
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compared to than that of control FS cells, as measured by the percent decrease in peak (t-

test, p <0.05, Fig. 3.7C).  For the LTS population, the percent increase in peak amplitude 

for the final response was slightly larger in PMG LTS cells (t-test, p <0.05, Fig. 3.7D). 

 

Increased probability of release causes increased sEPSC frequency in both PMG and 

control 

The increased s- and mEPSC frequencies observed in LTS interneurons could be 

due to the presence of more glutamatergic terminals or an increased probability of release 

from existing terminals.  For this reason, sEPSCs were also recorded in modified aCSF 

containing low Mg2+ and high Ca2+to increase the probability of presynaptic glutamate 

release (see Materials and Methods).  A percent increase in sEPSC frequency of roughly 

equal magnitude was seen in the LTS cells from PMG (677 ±278 %) and control cortices 

(470 ±190 %, Fig. 3.8).  This increase included a wide range of values for individual cells 

in both control and PMG cortex.  In control LTS cells, this also reflected an increase in 

mean frequency from 1.2 ± 0.2 Hz in normal aCSF to 6.4 ± 2.5 Hz in modified aCSF (t-

test, p <0.05).  In PMG, the corresponding values increased from 1.5 ±0.2 Hz to 9.9 ± 2.5 

Hz (t-test, p <0.05).  FS interneurons also demonstrated a similar level of increase 

between control (100 ±61 %) and PMG (122 ±38 %) populations, as expected, although 

their increase was much smaller than that of the LTS interneurons (Fig. 3.8).  For neither 

control nor PMG cortex was there an accompanying change in the amplitude of the 

spontaneous events.  
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Discussion 

The main finding of this study is that there is a selective increase in excitatory 

input to LTS interneurons in malformed, epileptogenic cortex.  Additionally, there 

appears to be a subtle decrease in excitatory input to FS cells in PMG cortex.  This is not 

reflected in the interneuron population as a whole; however, as sEPSC frequencies are 

not different when comparisons between control and PMG cortex include all 

interneurons. 

After separating FS and LTS interneurons based on their intrinsic properties (13; 

15; 28; 60; 61), we were able to note characteristic differences in physiological properties 

for these two groups in control.  The sEPSCs recorded from FS interneurons typically 

have a higher frequency, larger amplitude and faster rise and decay times compared to 

LTS cells (see Results).  This is not surprising, as both thalamocortical and local 

pyramidal cell inputs to FS cells tend to be reliable and precise (28; 330), while LTS cells 

have more failures in response to pyramidal cell synaptic stimulation and receive weak 

input from the thalamus (28).  The characteristics that distinguish these two types of 

interneurons are also related to the observation that the cells normally function within 

separate networks.  Electrically connected FS cells (28; 124; 131), for example, provide 

powerful inhibition (330) and elicit fast IPSCs in pyramidal cells (369).  This allows the 

horizontally oriented FS cells that synapse on cell bodies (185) to powerfully and rapidly 

effect feed-forward inhibition, while vertically oriented LTS cells (173) modulate activity 

via dendritic synapses.  Networks of LTS cells have a role in cortical synchrony (197) 

and elicit slower IPSCs than FS cells, likely due to their distal synapse location (369).  
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These two types of interneurons also have a differential response to acetylcholine (171; 

368), further suggesting that they subserve different functions.  Interestingly, under 

control conditions in hippocampus, differences have also been demonstrated between the 

excitatory input to dendrite-targeting and soma-targeting interneurons (81).  In 

hippocampus, for dendrite targeting interneurons, sEPSCs have been shown to be 

dependent on action potential firing, but sEPSCs in soma-targeting interneurons were 

largely independent of action potential firing (81). 

Just as the balance of excitation and inhibition is important for normal cortical 

function, we propose that an imbalance between the function of distinct inhibitory 

networks may contribute to the observed electrophysiological abnormality in this model.  

Inhibition itself was not measured directly for this study, but the EPSC frequency 

measured in inhibitory cells demonstrates a selective increase in the PMG LTS 

population, suggesting that LTS cells may more frequently be depolarized to threshold 

potential in PMG cortex (Fig. 3.4).  This in turn could create an increase in the inhibitory 

influence provided by the LTS population, enhancing vertically-oriented inhibition (173; 

174).  Due to connectivity provided by gap junctions and the subsequent coordinated 

activity of a number of LTS cells (197), this increase could result in columnar synchrony.  

In contrast, other studies have demonstrated decreased excitatory input to interneurons 

(367).  While this may intuitively make more sense with regard to hyperexcitability, not 

all models of hyperexcitability show decreased inhibition (50; 269).  Although the mean 

values for EPSC frequency were not different for FS cells, the separation between 

mEPSC IEI distributions for control and PMG also suggests that there is at least a 
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subpopulation of PMG FS cells receiving less excitatory input.  The range of mEPSC 

frequency is not different for PMG, and there is enough variation to produce similar 

means for each group, however, the lower median value indicates a shift toward lower 

mEPSC frequencies.  The idea of decreased input to FS cells is also consistent with a 

study that showed a selective decrease in the strength of inhibition from FS cells in layer 

IV of somatosensory cortex (329).  A loss of powerful feed-forward inhibition normally 

mediated by these cells could result in the absence of regulation needed to prevent 

uncontrolled spread of excitation. 

Amplitude, rise time and decay were not altered in PMG for either LTS or FS 

interneurons, suggesting that the observed alterations in frequency comprise a pre-

synaptic phenomenon.  In addition, the observed sEPSC frequencies were very close to 

the mEPSC frequencies, indicating that under these conditions, there is a limited amount 

of spontaneous activity (Fig. 3.4).  This suggests that the increased sEPSC frequency in 

PMG LTS cells is not action potential-dependent.  Rather, the increased mEPSC 

frequency supports the idea that increased afferent contacts selective to the LTS cell 

population underlie increased excitation.  In fact, previous work has suggested the 

possibility of increased excitatory drive on interneurons that occurs in a specific, non-

random fashion (160).  However, altered probability of release at the excitatory synapses 

could also have a role in the observed changes.  To evaluate this, modified aCSF 

(containing high Ca2+/low Mg2+), was applied to enhance neurotransmitter release 

probability (352).  We expected that if LTS cells in PMG cortex receive increased input 

due to a greater number of afferent fibers, the percent increase in frequency should mirror 
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that of the control population, which it did (Fig. 3.8).  A lesion-induced increase in 

presynaptic release probability for excitatory synapses on LTS cells would likely render 

their response to the modified aCSF similar to the smaller response seen in FS cells.  The 

FS cells were expected to respond less robustly, as they are more reliably excited by 

presynaptic excitation (330) and have higher sEPSC frequency under normal conditions 

(Fig. 3.4).  Conversely, if the probability of release was decreased in PMG FS cells, we 

would have expected to see a “rescue” effect following application of modified aCSF.  

While these data do not definitively prove that probability of release from excitatory 

synapses on interneurons is unaltered in this model, the idea of an altered number of 

afferent fibers and synapses is supported by other data that suggest an anatomical 

reorganization of afferent inputs (286).  Ultrastructural studies to determine the number 

of excitatory synapses on interneuron subtypes would help clarify this issue.  Ultimately, 

complex alterations to a number of characteristics may contribute to the observed 

changes, and our methods may be unable to distinguish each component. 

It has been previously reported that FS cells exhibit a depressive response to 

repeated stimuli, while LTS cells show facilitation (276).  Here, a 50 Hz stimulus train 

evoked depressive responses from FS cells and facilitating responses from LTS cells, 

with few exceptions.  FS cells typically receive strong glutamatergic input from terminals 

that release enough neurotransmitter to produce a reliable postsynaptic response, 

resulting in depleted glutamate stores and their depressive response after repeated 

stimulation.  Perhaps suggestive of a slight increase in release probability for the PMG 

FS neurons, “greater depression” was observed in these cells (Fig. 3.7).  A subtle increase 
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in the probability of release would make more glutamate available to be used in response 

to the later stimulations.  For the LTS cells, facilitation is explained by the presence of 

glutamate in the presynaptic terminal that is only released subsequent to repetitive 

stimulation and increased calcium influx.  Had release probability in PMG LTS cells 

already been increased, their response to repetitive stimulation would be expected to lose 

at least some facilitation, as the glutamate would be released at lower stimulus intensities 

under those conditions.  The majority of LTS cells still responded to the stimulus train 

with a facilitating response, demonstrating that they did not exhaust glutamate stores and 

could still produce facilitating responses in PMG cortex (Fig. 3.7).  However, if PMG 

LTS interneurons have a larger number of afferents, they should then have larger 

responses to threshold stimuli.  Surprisingly, the area of the evoked response was not 

different in PMG cortex when compared to control.  It is possible that the number of 

additional afferents required to double the initially low frequency of LTS interneurons 

might not be sufficient to cause a significantly increased evoked response, especially if 

there is a concomitant alteration in release probability.  Interestingly, another indirect 

measurement of aberrant excitatory input, late evoked activity, was observed in twice as 

many PMG interneurons as in control (see Results and Fig. 3.6).  This type of activity 

reflects excitation that resonates in the cortex prior to eliciting a postsynaptic response in 

the recorded cell.  The increased FS activity is a good indicator of increased excitation in 

the cortex, due to the reliable response to synaptic input seen in this cell type (28; 330).   

An intricate connectivity between excitatory and inhibitory cells that is only 

partially understood defines cortical organization and can be disrupted during 
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development.  For example, as the cortex matures, FS and LTS cells develop distinct 

relationships with neighboring pyramidal cells.  FS cells form reciprocal connections that 

are stronger than one-way connections, while LTS cells do not have this same propensity 

(371).  In addition, whether or not spatially related FS and pyramidal cells will receive 

excitatory input from the same afferents is dependent on these reciprocal partnerships, 

while for LTS cells, it is not (371).  When the freeze-lesion is made, neuronal death 

causes some incoming glutamatergic afferents to be deprived of their targets.  In 

particular, it appears that a number of FS cells are lost, evidenced by the decrease in PV-

immunopositive cells (288).  Even though thalamic and callosal afferents originally 

destined for the gyrus appear to hyperinnervate the paramicrogyral area (155; 286), there 

may be fewer pyramidal- FS pairs to receive these inputs.  One potential consequence of 

this could be a decrease in the FS cell efficacy.  If these interneurons are not stimulated at 

the same time as neighboring pyramidal cells, their role in feed-forward inhibition and 

control of horizontally spreading excitation could be hindered.  Also relevant to this study 

is the potential availability of more glutamatergic afferents for the surviving pyramidal 

and LTS cells.  The vertical orientation of LTS cells means that dendrites connected to 

layer V cell bodies may be located in layer IV, the main target of thalamic afferent fibers.  

Increased thalamic afferents could contribute to the increased EPSC frequency seen in 

these cells.  Additionally, while a large number of afferents may come from projecting 

sources, it is also possible that local pyramidal cells will show sprouting and increased 

axonal development, as is seen in the undercut model of post-traumatic epilepsy (294).  

In fact, recordings of in vitro epileptiform activity evoked by thalamic stimulation 



www.manaraa.com

 

95

suggest that the hyperexcitability relies on intracortical circuits more than thalamic input 

(329).   

Although it was not addressed in this study, synaptic inhibition between 

interneuron subtypes may be affected as well.  In normal cortex, FS cells synaptically 

inhibit LTS cells, but LTS cells tend not to inhibit each other (131).  The presence of 

fewer or “less active” FS cells might result in decreased IPSC frequency for both 

interneuron populations.  However, if other alterations occur, such as aberrant increased 

LTS-LTS synaptic inhibition, the extra excitatory input observed in this cell type may be 

“canceled out” and not cause the expected post-synaptic depolarization.  It would be 

interesting to study the inhibitory input to these interneuron subtypes as well for this 

reason.  It is known that FS cell IPSCs tend to be faster and larger than those in LTS 

cells, and eIPSCs often require higher stimulus intensities in LTS cells (15).  

Furthermore, the overall frequency of mIPSCs is unchanged in this model, indicating that 

if probability of release is not altered, the total number of inhibitory synapses is 

unchanged (160).  It may be difficult to accurately assess inhibitory function in the slice 

preparation (269), but a general comparison between inhibition and excitation within a 

given subtype should help address this question.  

The contribution of interneurons to the development of epileptogenesis occurs 

in the context of increased excitation and will take a significant amount of investigation 

to satisfactorily resolve.  At this point we suggest that as extra afferent fibers infiltrate the 

area adjacent to the lesion during the first week or two of development, they have fewer 

potential targets.  To make up for this, hyperinnervation of certain cells occurs, producing 
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increased excitation of pyramidal cells (375) and selectively increasing excitatory events 

in LTS cells (Fig. 3.4).  Although current seizure treatment strategies may contradict the 

idea of increased inhibition as a causative epileptogenic factor, a number of studies point 

to the maintenance or even enhancement of inhibition in epileptogenic cortex (50; 55; 

269; 293).  Focusing on one specific interneuron subtype helps to address some confusion 

regarding how this paradox exists.  In the model used for this study, overall inhibition 

does not show an obvious change, but selective alterations of inhibitory subtypes may 

permit functional consequences while still allowing for maintenance of global inhibition.  

Even a subtle increase in the activation of LTS interneurons could cause asymmetry in 

the inhibitory population in the form of increased output of vertically-oriented 

interneurons, which may be a contributing factor to epileptogenesis in this model. 
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Table 3.1 Properties of spontaneous and 
miniature postsynaptic currents. 

  

10-90 Rise Decay 
(

Area 
(pA*sec)#(msec)* 

 

msec)* 

 

sEPSCs 
Control LTS 
PMG LTS 

 

1.0 ±0.04 

 

5.4 ±0.2 

 

67.2 ±4.1 
1.1 ±0.05 

 

6.0 ±0.2 

 

70.2 ±3.3 

 
Control FS 
PMG FS 

0.65 ±0.02 
0.71 ±0.04 

4.3 ±0.1 
4.3 ±0.2 

66.2 ±2.1 
64.7 ±3.5 

Control LTS 

 

1.1 ±0.05 5.9 ±0.3 69.0 ±4.7 
mEPSCs 

PMG LTS 

 

1.1 ±0.08 

 

5.7 ±0.4 

 

64.0 ±5.5 

Control FS 
PMG FS 

0.64 ±0.04 
0.68 ±0.05 

4.1 ±0.1 
4.1 ±0.1 

58.1 ±2.2 
56.1 ±3.0 

* Significant difference between FS and 
latio 0
nt d tw nd

LTS popu
# Significa

ns, t-test, p <
ifference be

.05 
een FS a  

LTS for control mEPSC only, t-test, p< 0.05 
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Figure 3.1  Excitatory post-synaptic currents in inhibitory cells.  Isolated outward 
excitatory currents recorded in normal aCSF (sEPSCs, A), and in the presence of TTX 
(mEPSCs, B).  Mean sEPSC frequency (C) and amplitude (D) for all interneurons in 
control (gray, n = 73) and PMG (black, n =59) populations.  Mean mEPSC frequency (E) 
and amplitude (F) for all interneurons in control (gray, n = 32) and PMG (black, n = 25) 
populations.  There were no significant differences between control and PMG 
populations on any measure, t-tests.  
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Figure 3.2  Sample traces demonstrating typical firing patterns for LTS and FS 
interneurons.  Responses to high (1) and low (2) current steps are shown for (A) control 
LTS, (B) PMG LTS, (C) control FS, and (D) PMG FS interneurons.  Average action 
potential half-width plotted against total adaptation ratio for individual LTS (open 
square) and FS (filled triangle) interneurons from (E) control and (F) PMG cortex.   
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Figure 3.3  Classification of interneuron subtypes based on intrinsic properties.  FS 
and LTS interneurons could be differentiated from each other in control (gray, n = 39 for 
FS, n = 35 for LTS)  and PMG (black, n = 29 for FS, n = 41 for LTS) populations based 
on (A) input resistance, (B) mean action potential half-width and (C) total adaptation.  
Total adaptation is the ratio of the frequency of the last two action potentials and the 
frequency of the first two action potentials fired in response to a 400 ms square current 
pulse.  * = t-test, p <0.05. 
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Figure 3.4  Excitatory post-synaptic currents in FS and LTS interneurons.  Sample 
traces showing typical mEPSCs recorded from FS interneurons in (A) control and (B) 
PMG, and typical mEPSCs recorded from LTS interneurons in (C) control and (D) PMG.  
Mean sEPSC frequency (E) and amplitude (F) measured in control (gray, n = 31 for LTS, 
n = 33 for FS) and PMG (black, n = 23 for LTS, n = 28 for FS) populations.  Mean 
mEPSC frequency (G) and amplitude (H) measured in control (gray, n = 14 for LTS, n = 
17 for FS) and PMG (black, n = 9 for LTS, n = 12 for FS) populations. * = t-test, p <0.05. 
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Figure 3.5 Population distribution and IEI cumulative probability for mEPSCs.  
Population distribution is altered for synaptic but not intrinsic measures in LTS cells 
only.  Shown are the distribution limits (maximum and minimum) as well as mean (x) 
and median (-) for each population, with AP halfwidth plotted on the left axis and 
mEPSC frequency plotted on the right axis.  Control is shown with gray-filled symbols, 
PMG with black-filled symbols for  (A) LTS interneurons and (B) FS interneurons.  
Cumulative probability of mEPSC IEI duration is altered for LTS and FS interneurons, 
but not for the overall interneuron population.  Control is shown with gray line, PMG 
with black line. (C)  Cumulative probability of IEI duration for LTS cells.  For control 
and PMG, nine representative LTS cells were chosen from each group that had mEPSC 
frequencies closest to the median, and 200 events per cell were used for a total of 1800 
events.  Significant separation between control and PMG distributions, Kolmogorov-
Smirnov test, p <0.05.  (D) Cumulative probability of IEI duration for FS cells.  For 
control and PMG, 300 events were used from each of six representative cells, for a total 
of 1800 events per group.  Significant separation between control and PMG distributions, 
Kolmogorov-Smirnov test, p <0.05.  (E) Cumulative probability of IEI duration for 
overall interneuron population.  For control and PMG, 300 events from each of twenty 
three representative cells were included, for a total of 6900 events. 
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Figure 3.6  Evoked postsynaptic currents.  (A-B) Sample traces demonstrating the 
short-latency inward eEPSC recorded from interneurons following a series of five applied 
current intensities (1x, 2x, 4x, 8x, 16x threshold).  (A) Graded responses in a 
representative LTS cell from control (1) and PMG (2) cortex.  (B) Graded responses in a 
representative FS cell from (1) control and (2) PMG cortex.  (C) eEPSC area and (D) 
time-to-peak for short latency inward EPSCs is shown for all five stimulus intensities in 
control (filled symbols, n = 22 for LTS, n = 22 for FS) and PMG (open symbols, n = 15 
for LTS, n = 22 for FS).  For the area measurement shown in (C), both LTS populations 
(control and PMG) are different from both FS populations (control and PMG), repeated 
measures ANOVA, p <0.05.  For time-to-peak measurement shown in (D), control and 
PMG LTS populations are not different from one another, control FS is different from all 
other cell populations, repeated measures ANOVA, p <0.05. (E-F) Sample traces 
demonstrating the presence of variable-latency evoked activity in response to a low 
intensity stimulus (left, corresponding to 200 pA vertical measurement on scale bar) 
compared to a normal response to high intensity stimulation (right, corresponding to 400 
pA vertical measurement on scale bar) in (E) a control FS cell and (F) a PMG FS cell.  
(G) eEPSC area for variable-latency activity is plotted against stimulus intensities for 
control (filled symbols, n = 22 for LTS, n = 22 for FS) and PMG (open symbols, n = 15 
for LTS, n = 22 for FS) cells.  For late activity, control FS, control LTS, and PMG LTS 
cells are not different from each other.  PMG FS cells differ from both control and PMG 
LTS cells on this measure, repeated measures ANOVA, p <0.05. 



www.manaraa.com

 

109



www.manaraa.com

 

110

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7  Interneuron response to a 50Hz train of stimuli at maximal intensity 
(16x threshold).  Sample eEPSC traces demonstrating (A) facilitation in control (1) and 
PMG (2) LTS interneurons and (B) depression in control (1) and PMG (2) FS 
interneurons.  (C) Percent change for each eEPSC peak compared to the preceding peak 
(relative comparison) for FS interneurons, t-test, * p <0.05.  (D) Percent change for each 
eEPSC peak compared to the preceding peak for LTS interneurons, t-test, * p <0.05.  (F) 
Percent change in peak for each eEPSC, compared to the first eEPSC (absolute 
comparison) for LTS and FS interneurons from both control and PMG cortex, t-tests, all 
N.S.  For all graphs, control LTS, filled circle, n = 21; PMG LTS, open circle, n = 15; 
control FS, filled triangle, n = 19; PMG FS, open triangle, n = 20.  
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Figure 3.8  Effect of altering aCSF Mg2+ and Ca2+ concentrations on sEPSC 
frequency.  (A) Sample traces demonstrating typical sEPSCs in a control LTS 
interneuron, recorded in (1) normal aCSF and (2) modified (low Mg2+/High Ca2+) aCSF.  
(B) Typical sEPSCs recorded from a PMG LTS interneuron in (1) normal aCSF and (2) 
modified aCSF.  (C) Mean percent change in sEPSC frequency for individual cells in 
control (gray, n = 8 for LTS, n = 6 for FS) and PMG (black, n = 5 for LTS, n = 5 for FS) 
populations. t-test, N.S.   
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Chapter 4 

Introduction to metabotropic glutamate receptors 

 

There are two main receptor types that mediate the cellular response to glutamate, 

the major excitatory neurotransmitter of the central nervous system.  Fast excitatory 

transmission is mediated by ionotropic receptors that regulate the opening of cation-

permeable channels in the neuronal membrane.  The three main ionotropic receptor 

subtypes are: (1) the AMPA receptor, (2) the kainite receptor, and (3) the NMDA 

receptor.  Functioning on a slower time scale, metabotropic glutamate receptors (mGluR) 

are coupled to G-proteins that initiate intracellular signaling cascades in response to 

glutamate (320).  In contrast to ionotropic glutamate receptors, mGluRs are typically 

considered to have modulatory roles within the neocortex.  As more is learned about 

these receptors and their physiological functions, it is increasingly possible to assign 

them potential roles in pathological processes, including epilepsy.  The purpose of this 

chapter is to:  (1) introduce the characteristics and developmental expression patterns of 

mGluRs, (2) establish the utility of mGluRs and their ligands for the pharmacological 

manipulation of specific interneuron subtypes, and (3) review their current and potential 

associations with disease states, including epilepsy. 
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4.1 Classification and function of mGluRs 

Eight different subtypes of mGluRs have been identified and segregated into three 

main groups based on amino acid sequence and mechanism of intracellular signal 

transduction.  Group I contains mGluR1 and mGluR5, group II contains mGluR2 and 

mGluR3, and group III contains mGluR4, mGluR6, mGluR7 and mGluR8 (77; 261; 339).  

The majority of group I receptors are located postsynaptically (58; 204), while most of 

the group II and III receptors are located on the presynaptic membrane (58; 302).  As 

group I mGluRs are of particular interest to the experiments described in the next chapter, 

the remainder of this introduction will focus on those receptors. 

The signaling mechanism of group I mGluRs involves activation of 

phospholipase C and subsequent phosphoinositide hydrolysis, ultimately resulting in the 

production of diacylglycerol and release of calcium from intracellular stores (261).  There 

are differences between the mGluR1 and mGluR5 subtypes with regard to calcium 

increase and oscillations.  In transfected cell lines, glutamate application causes 

intracellular calcium oscillations following activation of mGluR5, but not mGluR1 (168).  

The distinction appears to be due to PKC phosphorylation of a threonine residue only 

found on the mGlu5 receptor (168).  In immature rat neocortex, agonist application 

induces simple, non-oscillatory calcium responses from mGluR1 activation, but it causes 

oscillations through the mGlu5 receptor (113).  However, in striatal cholinergic 

interneurons, which express both mGluR1 and mGluR5, only after blocking mGluR5 is 

oscillatory behavior observed (43).  The mechanism for these oscillations appears to 

involve both tyrosine kinase and L-type Ca2+ channels (43).  It appears that both subtypes 
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of receptor are capable of inducing membrane oscillations, but this may depend on the 

cell type, source of calcium, and type of agonist used to elicit the response.    

 

4.2 Ligands for mGluRs 

 

4.2.1 Group I agonists 

There are several known non-selective agonists to the group I mGluRs, such as 

quisqualate and, of course, glutamate (280).   In the 1980s and early 1990s, the first 

selective agonist for mGluRs was identified.  1S,3R-1-aminocyclopentane-trans-1,3-

dicarboxylic acid (ACPD) was determined to activate mGluRs at concentrations that do 

not affect the ionotropic receptors (EC50 in the range of 10-50 µM, 305).  Since the 

discovery of ACPD, a number of compounds with increased selectivity have been 

identified or synthesized and are commonly used to distinguish the effects of mGluR 

subtypes.    

 The phenylglycine derivative (S)-3,5-dihydroxyphenylglycine (DHPG) is the 

first agent to demonstrate selective and potent group I mGluR agonist activity (154; 305; 

310).  DHPG does not affect the level of cAMP in neonatal or adult rat brain, even with 

DHPG at a concentration of 1 mM (304).   This indicates that it lacks activity at mGluRs 

that make use of the cAMP second messenger system, namely group II and group III 

(304).  In oocytes expressing mGluR1, the experimentally determined EC50 for DHPG 

(60µM) was lower than that of ACPD, but higher than that needed to activate group I 

mGluRs in rat brain tissue (154).   In rat, the EC50 for DHPG ranges from 7 µM for 
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neonatal brain slices to 28 µM in adults (304).  DHPG is currently the drug of choice for 

studies in which selective activation of group I mGluRs is necessary.  For the 

experiments in Chapter 5, DHPG was used at a concentration of 10 µM.   

Currently, there is no specific agonist for mGluR1, but (RS)-2-Chloro-5-

Hydroxyphenylglycine (CHPG), has recently been synthesized as a selective agonist for 

the mGlu5 receptor (95).  As evidence of this, CHPG-induced CREB phosphorylation 

and its downstream effects were reversed by specific mGluR5 antagonism but were 

unaffected by antagonists to mGluR1 (208).  CHPG has also been shown to activate 

mGluR5 in vivo, and again this response is selectively reduced by antagonists specific for 

mGluR5 but not mGluR1 (295).  The hippocampal cellular response to CHPG activation 

of mGluR5 involves modulation of NMDA receptor- induced depolarization (95), but this 

is not reflected in the present study, as NMDA receptors were blocked.  For the 

experiments in the following chapter, CHPG was used at a concentration equal to its 

EC50, 750 µM (95).   

 

4.2.2 Group I antagonists 

There are a number of well-characterized and selective antagonists for the group I 

mGluRs.  The mGluR1-specific antagonist used for the experiments described in the next 

chapter is 1-Aminoindan-1,5-dicarboxylic Acid (AIDA).  AIDA is a potent, selective and 

competitive mGluR1α antagonist (254).  In cells transfected with mGluR1α, AIDA was 

able to reduce glutamate-induced phosphoinositide synthesis, successfully inhibiting the 

activity of the mGlu1 receptor, while having a much smaller effect on the activity of 
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mGluR5 (231).  The range of EC50 values spans from 7 µM to 214 µM, though this is 

likely due to the variety of both the experimental conditions and the agonists used (231).  

At very high concentrations (1mM), weak agonist activity on the mGlu2 receptor and 

weak antagonism of the ACPD effect on mGlu5a receptors were observed (305).  The 

concentration of AIDA needed to achieve these responses, however, was greater than 

three times the concentration used for the experiments in the following chapter.  Of the 

other compounds that have been identified as mGluR1α-specific antagonists, many have 

activity at other receptors, depending on the concentrations used (305).  Comparatively, 

AIDA must be applied at a concentration many-fold higher than its EC50 to 

promiscuously activate receptors besides mGluR1.        

 Finally, 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is the selective mGluR5 

antagonist used for these experiments (305).  It is a non-competitive antagonist that binds 

at a novel allosteric site (127).  MPEP has been shown to inhibit phosphoinositide 

hydrolysis in cells expressing the human mGluR5 (245), neonatal rat brain slices (127). It 

also reduces DHPG-induced excitation, recorded in vivo from adult rat hippocampus 

(127).  In cells expressing rat mGluR5, MPEP also demonstrated inverse agonist activity 

(245).  Specific residues in transmembrane domains III and VII are necessary for the 

selective binding of MPEP to mGluR5 (245).  The proposed mechanism of action of 

MPEP is stabilization of the inactive conformation of the mGluR5 receptor within the 

membrane (191).  Recently, electrophysiological effects of MPEP on ionotropic 

glutamate receptors have been reported (191).  However, for the experiments discussed 
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here, AMPA and NMDA receptors were pharmacologically blocked, allowing MPEP to 

effectively discriminate between mGluR1 and mGluR5.   

 

4.3 Development and expression of group I mGluRs 

The presence of group I mGluRs has been demonstrated in neocortex through in 

situ hybridization (314) and immunohistochemistry (198; 281).  Both immunogold and 

immunohistochemical labeling indicate that the group I receptors are located primarily on 

postsynaptic elements (313; 315), but largely outside the synaptic specialization (24; 

242).  Various forms of mGluR1 are present in cell bodies throughout the layers of 

neocortex, sometimes with region-specific splice variant expression (107).  Furthermore, 

in neocortex, mGluR1 immunostaining is present in interneurons only (256).  Double-

labeling studies indicate that mGluR1 colocalizes with SS and VIP, but not PV, 

demonstrating that expression of the mGlu1 receptor is restricted further to a specific 

interneuron subpopulation (24; 326).  This is supported by an in-situ hybridization study 

that shows mGluR1 mRNA in interneurons that contain SS but not PV (177).  

Furthermore, mGluR5 mRNA was shown to be present in projection neurons and some 

interneurons but was almost completely absent from SS interneurons (177).  It has also 

been demonstrated in striatum that the expression of mGluR5 mRNA is specifically 

absent from SS and cholinergic interneurons (343).  This specificity is employed in the 

following chapter, as mGluR1 agonists are used to selectively activate the SS/LTS 

interneuron type. 
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Each mGluR has a different, dynamic pattern of expression throughout 

development.  In the rat, mGluR5 has its highest transcript expression in utero and during 

the first days of postnatal life, while mGluR1 mRNA gradually increases to adult levels 

over the first three postnatal weeks (59).  In the adult, less than ten percent of all neuronal 

cells express mGluR1, and most are scattered in cortical layers IV-VI (314).  This pattern 

of mGluR1 expression can be recognized as early as P7 (59) and is relatively established 

by P11 (314), although some increase still occurs until P21 (59).  In a complementary 

immunohistochemical study, the prevalence of the mGluR1 protein increases postnatally, 

so that by P15, interneurons with bipolar or multipolar morphology express it in all layers 

of neocortex (198).  Conversely, there is strong mGluR5 expression from P0 to P2.  After 

one week, mGluR5 can be observed in the neuropil, particularly in layer IV barrel 

hollows until P21, when all layers approached the same level of neuropil labeling (198).  

The experiments in chapter 5 are performed during the third postnatal week, and both 

mGluR1 and mGluR5 should be approaching mature distributions at that time.   

 

4.4 Potential role for group I mGluRs in pathological states 

With regard to disease processes, activation of group I mGluRs tends to be 

detrimental to the nervous system, while activation of group II and III is considered to be 

neuroprotective (116; 163; 238; 333).  Different studies have implicated the group I 

mGluRs in neurological injury and a variety of disease states, such as Alzheimer disease, 

Huntington disease, Parkinson disease, Down syndrome and epilepsy (11; 40; 45; 58; 

234; 244).  For epilepsy in particular, analyses of both human tissue samples and 
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experimental models have demonstrated an alteration of mGluR expression (96).  For 

example, in two animal models of epilepsy, as well as in human cases, there is a selective 

upregulation of mRNA and protein expression of the mGlu1 receptor subtype (40).  

Immunohistochemistry shows an upregulation of both mGluR1 and mGluR5 in patients 

with glioneuronal tumors and intractable epilepsy (11).  Patients with Taylor-type focal 

cortical dysplasia (8) and temporal lobe epilepsy (40; 241) also show an upregulation of 

one or both group I mGluRs.  Much attention has recently been placed on the mGlu5 

receptor as a potential contributor to the pathophysiology of Fragile X syndrome, a 

condition that includes, among other symptoms, seizures and abnormal neuronal 

morphology (58).  The ibotenate injection model, that produces a cortical injury similar 

to the freeze-lesion used for these studies, demonstrates a significant increase in mGluR5 

expression in the contralateral hippocampus one week post-injection (233).  Group I 

receptors are also increased in the uninjured CA1 and DG regions of the hippocampal 

formation in these animals (233).  Furthermore, as activation of group I receptors has a 

proconvulsant effect (229), pharmacological agents that antagonize these receptors are 

being identified as potential treatment options for some of these conditions (247). 

 A number of studies that have investigated the role of group I mGluR activation 

with regard to epileptiform activity have done so in the presence of GABA antagonists, 

using disinhibition to induce hyperexcitability (221; 222; 298; 345).   One advantage of 

this inhibitory blockade is that it facilitates the observation of mGluR-mediated 

pyramidal cell activation.  The idea of using group I mGluR antagonists as 

anticonvulsants would, in this paradigm, depend on their ability to reduce the excitatory 
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or bursting activity in the pyramidal cells (222).  However, blocking GABA receptors 

also disallows evaluation of the potential mGluR-mediated interneuron contribution to 

epileptogenesis.  It is necessary to address this possibility for several reasons.  Firstly, the 

SS/LTS interneuron subtype that expresses mGluR1 receptors (177; 326) also receives 

extra excitatory input (Chapter 3) and has increased action potential firing capability 

(Chapter 2) in this model.  This increased input has the potential to translate into 

enhanced output from this specific group of interneurons.  This is important because, as 

discussed in chapter 1, LTS/SS cells have a vertical axon distribution that can span 

several cortical layers (173; 174) and they function within a coordinated network to 

generate synchronous activity in cortex (197).  Enhanced cortical synchrony could then 

promote epileptiform activity.  The following experiments employ the specific agonists 

and antagonists discussed in this chapter to selectively manipulate the activity of LTS/SS 

interneurons.  The goal of this study, especially in light of the findings from chapters 2 

and 3, is to determine whether the output of LTS/SS interneurons is augmented.  This 

would provide a potential mechanism for columnar synchrony and the impetus for future 

studies on the network properties of these cells. 
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Chapter 5 
 

Enhanced Responsiveness of Interneurons to Group I Metabotropic Glutamate 

Receptors in Malformed Epileptogenic Cortex 

 

Introduction 

Epilepsy caused by developmental cortical malformations, such as 

polymicrogyria (52; 70; 88; 140), produces seizures that are difficult to treat (188; 246).  

In this study we employ a rat model that closely approximates the human condition with 

regard to both histopathology (99; 100) and hyperexcitability (156; 157).  Previous work 

with this model has suggested that neurons adjacent to the malformed region are 

hyperinnervated by excitatory afferents (160; 375).  Inhibitory as well as pyramidal 

neurons receive this increased synaptic input (160). 

Interneurons are affected in this model, but inhibition does not show a clear 

decrease when measured as a whole (269).  However, immunohistochemical studies in 

this model have demonstrated a differential effect on inhibitory interneurons, based on 

subtype.  A down-regulation of parvalbumin (PV) staining has been demonstrated (288), 

but the number of calbindin (CB)-immunopositive interneurons has been shown to 

increase (308).  These two markers co-localize, but the populations are not completely 

overlapping, and this appears to be specific to layer II/III (184).  Furthermore, the CB cell 

population contains a separate overlap with the SS cells (174).  The number of SS 
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interneurons remains unchanged at the age of hyperexcitability onset (250).  These results 

indicate that either the number of inhibitory cells is altered in this model, or the number 

of cells is the same but they have altered protein expression and enhanced or diminished 

functional capability.  

With regard to function, the subset of SS interneurons is of particular interest for 

this study.  SS interneurons are part of the class of bipolar, vertically-oriented, low-

threshold-spiking (LTS) cells (60; 170; 172).  They also express the mGlu1 receptor, a 

characteristic they share with at least one other subtype of bipolar interneurons, those 

staining for vasoactive intestinal peptide (326).  Bipolar cells normally provide a 

relatively weak, modulatory inhibition.  In contrast, the horizontally-oriented population 

of interneurons is made up of PV-immunopositive (170) fast-spiking (FS) cells (170; 

172) that do not express mGluR1 (326).  The basket cell morphology of FS cells permits 

them to provide powerful inhibition at the cell body or axon initial segment.   

If one or more interneuron subtypes have diminished efficacy due to low cell 

number or activity, the observed maintenance of global inhibition could result from the 

compensatory over-functioning of another type.  Here, we investigated whether the 

output of bipolar interneurons is enhanced in PMG cortex, specifically within layer V.  

These cells are orientated to have contacts within several layers of the same cortical 

column.  Increased efficacy may give them the potential to create columnar synchrony, 

and thereby promote epileptogenesis.  Selective activation of bipolar interneurons, 

including SS/LTS cells, by group I mGluR agonists has previously been shown (73; 373).  
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Using various ligands for group I mGluRs, these studies evaluate group I mGluR-induced 

output by recording sIPSCs in layer V pyramidal cells.   

 

Materials and Methods 

 

Freeze lesion surgery 

These experiments were done in accordance with the policies and guidelines of 

Virginia Commonwealth University regarding care and use of animals.  Freeze lesions 

were made as previously described (375).  Rat pups aged postnatal day (P)1 were 

anesthetized with hypothermia by placing them in ice for 4-5 minutes.  Using an anterior-

posterior incision, the skull was exposed, and a freeze probe consisting of a copper bar 

with a 2 by 5 mm rectangular tip cooled to -50◦ C was applied to the skull over the left 

somatosensory cortex for 5 seconds.  The skin was sutured, the pup warmed and returned 

to the dam.   

 

In vitro slice preparation 

Lesioned animals and unoperated control rats aged P12-17 were anesthetized with 

isoflurane and decapitated.  The brain was removed and immediately placed into cold 

(4◦C) sucrose slicing solution containing (in mM): 2.5 KCl, 1.25 NaH2PO4, 10 MgCl2, 0.5 

CaCl2, 26NaHCO3, 11 glucose, and 234 sucrose.  Slices 300 µm thick were cut on a 

vibratome and transferred to a holding chamber filled with ‘normal’ artificial 

cerebrospinal fluid (aCSF) containing (in mM): 126 NaCl, 5 KCl, 1.25 NaH2PO4, 2 
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MgCl2, 2 CaCl2, 26 NaHCO3, and 10 glucose, 285-290 mOsm.  All solutions were 

infused with 95%O2/5%CO2, maintaining pH at 7.4.  Sections were maintained at 34◦C 

for 45 minutes and at room temperature thereafter.  To isolate layer V interneurons and 

eliminate the influence of other cortical layers, horizontal slices were used for all 

recordings from pyramidal neurons in this study.  Recordings from interneurons were 

made within layer V in coronal slices.  In all cases, recordings were made at 30-32oC, in 

normal aCSF containing dinitroquinoxaline [(6,7)],2,3(1H,4H)-dione (DNQX, 20 µM) 

and  D,L-2-amino-5-phosphonopentanoic acid (APV, 100 µM) to block AMPA and 

NMDA receptors, respectively.   

 

Electrophysiology 

Whole cell patch-clamp recordings from layer V pyramidal neurons (Fig 1) in 

somatosensory cortex were obtained using glass micropipettes (2-5 MΩ, Garner glass 

Co., Claremont, CA) filled with (in mM): 70 K-gluconate, 70KCl, 10 Hepes, 4 EGTA, 2 

NaCl, 4 Na-ATP, 0.3 Na-GTP,  275-285 mOsm, ECl
- = -15 mV, pH 7.3.  Recordings were 

made from an area of cortex 0.5-1.5 mm on either side of the lesion and from homotopic 

cortex in controls.  Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded 

in isolation in voltage clamp mode at Vh = -70 mV (Fig. 1B).  Current clamp recordings 

were made from interneurons using glass pipettes as described above, that contained (in 

mM): 130 K-gluconate, 10 Hepes, 11 EGTA, 2 MgCl2*6H2O, 2 CaCl2*2H2O, 4 Na-

ATP, 0.2 Na-GTP, 275-285 mOsm. 
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Recordings were made with a Multiclamp-700A amplifier (Axon Instruments), 

and only recordings with an access resistance less than 23 MΩ were accepted for 

analysis. Data was digitized online (20 kHz) using software from Axon Instruments.  

Data analysis for voltage clamp experiments was performed using MiniAnalysis 

(Synaptosoft).  Amplitude measurements were made on ‘Type I’ events, which are 

isolated (no overlap with adjacent events) currents.  Since the max decay time was ~20 

msec, events having an interevent interval of 40 msec or more were identified as Type I.  

Some intrinsic parameters were measured using Clampfit (Axon Instruments).  

Measurements are reported as means ± SEM.  Student’s t-test with or without Bonferroni 

correction (as indicated), as well as one-way and two-way ANOVAs were used to test for 

significance, p <0.05 was considered to be significant. 

 

Pharmacological agents and application 

Ligands for group I mGluRs were applied using a four-barrel local perfusion 

system.  The first recording was made with normal aCSF flowing in the local perfusion 

line.  A second data file was collected during which the local perfusion was switched to 

aCSF containing one or more drugs active at group I mGluRs.  This recording was 

continued for ~1 minute after the drug application began, during which time the response 

stabilized (Fig 2A).  After this period, separate data files were collected for analysis.  

The pharmacological agents used in the local perfusion system were as follows: S-3,5-

dihydroxyphenylglycine hydrate (DHPG, group I mGluR agonist, 10 µM); 6-methyl-2-

(phenylethynyl) pyridine hydrochloride (MPEP, mGluR5-specific antagonist, 10 µM); 1-
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amino-2,3-dihydro-1H-indene-1,5-dicarboxylic acid (AIDA, mGluR1-specific 

antagonist; 30 µM, 100 µM, 300 µM); (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 

mGluR5-specific agonist, 750 µM).  For some experiments, MPEP and AIDA were 

applied in the bathing solution at concentrations specified above.  For interneuron 

recordings, MPEP (10 µM) was included in the bathing solution and DHPG was applied 

at a variety of concentrations (1 µM, 10 µM, 100 µM, 200 µM). 

 

Results 

Recordings were made from a total of 93 control and 83 PMG pyramidal neurons. 

Overall health of the recorded neurons was consistent across both cell populations, based 

on intrinsic properties of resting membrane potential, input resistance, membrane time 

constant, and action potential amplitude (Table 5.1).  All recordings were made at a 

holding potential of -70 mV in aCSF containing APV (100 µM) and DNQX (20 µM), 

limiting these measurements to monosynaptic IPSCs that could be abolished with 

application of the GABAA antagonist, bicuculline (10 µM, Fig. 5.1B).  

 

DHPG application increases sIPSC frequency 

The mean sIPSC frequency recorded in normal aCSF was not different between 

control (5.3 ±0.3 Hz) and PMG (4.9 ±0.7 Hz) populations, nor was there any difference 

in the amplitude of isolated (Type I) events (Fig. 5.2).  To activate group I mGluRs, 

DHPG (10 µM) was applied with a local perfusion system that bathed ~300 µm around 

the recorded cell.  As expected, this caused an increase in sIPSC frequency in both 
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control and PMG neurons (Fig. 5.2).  Although both control and PMG cells responded to 

DHPG, they did not respond equally.  The mean percent increase in frequency, calculated 

in individual cells, was much greater in PMG compared to control cortex (354 ±71 versus 

195 ±43% for PMG versus control cells, respectively, t-test, p<0.05, Fig. 5.2F).  While 

most cells showed an increase in sIPSC frequency after DHPG application, a slight 

decrease in sIPSC frequency was observed in a small number of cells in both control (4 

cells) and PMG (2 cells) cortex (Fig. 5.2G).  Even when cells that did not respond to 

DHPG are excluded, there is still a clear difference in the median values for PMG 

compared to control (horizontal bars, Fig. 5.2G). The sIPSC mean amplitude (Type I 

events) was unaffected by drug application for both control and PMG groups (Fig. 5.2E).  

Here for DHPG and in all drug application cases, the sIPSC rise time and decay time 

were unaffected by the drug application (t-tests, N.S.).  In control cells for aCSF versus 

DHPG, mean rise times were 2.3 ±0.05 versus 2.4 ±0.04 ms, and mean decay times were 

15.5 ±0.3 versus 14.9 ±0.2 ms.  In PMG cells for aCSF versus DHPG, mean rise times 

were 2.4 ±0.1 versus 2.4 ±0.1 ms, and mean decay times were 16.0 ±0.2 versus 14.5 ±0.3 

ms.  There was also no significant difference between control and PMG groups for these 

measures (t-test, N.S.). 

Immunohistochemical studies indicate that mGlu1 receptors are located on SS-

positive, LTS-type interneurons (326).  For this reason we expected that the effect of 

DHPG was due to interneuron activation by mGluR1s.  To confirm this, the mGluR1-

specific antagonist AIDA was added to the local application of DHPG.  At 300 µM, 
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AIDA significantly reduced the DHPG effect in both control and PMG cortex (Fig. 5.2B-

D).   

 

Effect of DHPG with antagonists in the bath 

To further examine whether DHPG was acting at mGluR1 or mGluR5, selective 

antagonists for each were applied in the bathing medium.  It was reported previously that 

baseline glutamate levels can activate group I mGluRs in the same cell population we 

studied here (16).  However, in the presence of APV and DNQX used for these 

experiments, sIPSC frequency and amplitude were not changed within the control or 

PMG groups when mGluR antagonists were applied (MPEP, 10µM, AIDA, 100 µM or 

300 µM, Fig. 5.3).  When control and PMG groups were compared under these 

conditions, only when MPEP was included in the bathing medium was there a difference.  

In this case, the sIPSC frequency was significantly less in PMG cells compared to control 

(Fig. 5.3C, t-test, p<0.05). 

With the mGluR5 antagonist MPEP (10 µM) in the bathing medium, local DHPG 

application still increased sIPSC frequency in both control and PMG cells, as expected 

(Fig. 5.4).  The percent increase in PMG cortex was not different from control (233 ±78 

and 158 ±45% for 21 PMG and 21 control cells, respectively, t-test, N.S.).  Under these 

conditions, adding AIDA (300 µM) to the local perfusion of DHPG returned the sIPSC 

frequency to near-baseline levels for both control and PMG cells (Fig. 5.4). 

With the mGluR1 antagonist, AIDA (100 µM) in the bathing medium, control 

cells showed no change in sIPSC frequency during application of DHPG (Fig. 5.5A-C).  
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Surprisingly, for PMG cells under the same conditions, DHPG still caused a large 

increase in sIPSC frequency (from 3.3 ±0.7 to 8.8 ±1.4 Hz, t-test, p<0.05, Fig. 5.5C,E).  

The sIPSC frequency was reduced nearly back to the baseline value by subsequent MPEP 

application (10 µM, Fig. 5.5C).  This effect was even more convincing when 300 µM 

AIDA was included in the bathing medium (Fig.  5.5D,F).  In both cases of 100 and 300 

µM AIDA in the bath, the percent change in sIPSC frequency after addition of DHPG 

was significantly greater in PMG compared to control cells (Fig. 5.5E,F, t-tests, p<0.05). 

 

CHPG:  mGluR5 selective agonist 

To confirm that mGlu5 receptors activate interneurons in PMG, but not control 

cortex, the mGluR5 specific agonist CHPG was applied through the local perfusion 

system, with normal aCSF bathing medium.  In PMG cortex, CHPG (750 µM) caused a 

significant increase in sIPSC frequency that was reversed by MPEP (10 µM) application 

(Fig. 5.6A).  CHPG did not affect sIPSC frequency in control cortex (Fig. 5.6B).  Similar 

to the results for DHPG, sIPSC amplitude, rise time and decay time were also unaffected 

by CHPG application.  In control cells for aCSF versus CHPG, mean amplitudes were 

25.3 ±3.0 versus 20.8 ±1.3 pA, mean rise times were 2.3 ±0.03 versus 2.4 ±0.1 ms, and 

mean decay times were 14.0 ±1.1 versus 13.2 ±1.1 ms.  In PMG cells for aCSF versus 

CHPG, mean amplitudes were 33.1 ±2.9 versus 36.85 ±11.3 pA, mean rise times were  

2.2 ±0.1 versus 2.2 ±0.1 ms, and mean decay times were 14.6 ±0.7 versus 14.3 ±1.0 ms.   
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DHPG activates LTS but not FS cells 

Although previous studies have shown that group I mGluR agonists activate LTS 

but not FS cells (27), it was necessary to confirm that this selectivity is not altered in 

PMG cortex.  To verify this, current clamp recordings were made from interneurons 

before and during DHPG application in control and PMG cortex.  Interneurons were 

initially selected based on their appearance under DIC optics.  Cells having an oval or 

elongated soma and appearing to have thick processes directed toward both the pia and 

the subcortical white matter were suspected LTS neurons.  Cells having a small, round 

soma with multiple processes and/or a thin dendrite directed toward the pial surface were 

suspected FS neurons.  Interneuron subtype was confirmed based on the action potential 

firing pattern.  As previously described, FS interneurons had a brief action potential (<1 

msec), and showed little adaptation during a 400 msec depolarizing current pulse 

injection (Fig. 5.7B).  In contrast, LTS interneurons had longer action potentials and fired 

at high frequencies initially, with slowing frequency during a long current injection (Fig. 

5.7A).  These cells showed the same previously reported difference in the peak of the 

afterhyperpolarizations (AHP) for a long spike train, namely that the first AHP was more 

hyperpolarized than the rest (28).  Cells identified as LTS in control cortex responded to 

DHPG application with abrupt depolarization, a noticeable increase in baseline noise and, 

in some cells, action potential firing (Fig. 5.7A, C).  The same was true in PMG cortex 

(Fig. 5.7B).  In contrast, FS cells in both control and PMG cortex demonstrated only 

slight depolarization, no increase in noise and no action potential firing in response to 

DHPG (Fig. 5.7B,C).   
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Although these results suggest that the increased response of PMG cells to DHPG 

was due in part to mGluR5 receptors, it could also be caused by an increased sensitivity 

of mGluR1 receptors on PMG interneurons.  To test this idea, the magnitude of the 

DHPG-elicited depolarization of interneurons was examined during application of 

varying concentrations of DHPG.  We measured both the peak and the ‘steady-state’ 

(observed after >1 min of application) depolarization.  LTS cells responded to increasing 

concentrations of DHPG with increasingly larger depolarizations, reaching the maximum 

response at 100 µM.  In addition, membrane oscillations were induced in the majority of 

LTS interneurons in both control and PMG cortex, with concentrations of DHPG of 

10µM and greater (80% of 15 control and 89% of 19 PMG cells).  The dose-response 

curves of the peak and steady-state membrane potential change suggest that there was no 

change in the sensitivity of mGlu1 receptors in PMG cortex relative to control cortex, for 

either LTS or FS interneurons (Fig. 5.7D, E).    A two-way ANOVA showed a significant 

difference for concentration in LTS cells, but no difference between control and PMG 

populations and no interaction between concentration and subject group (p <0.05 was 

used for significance).  For FS interneurons, the two-way ANOVA showed no significant 

differences for either concentration or subject group or for interaction between these two. 

 

Discussion 

These data show that group I mGluRs activate inhibitory cells with greater 

efficacy in PMG cortex than in control and that this increase is due to mGluR5 in 

addition to mGluR1.  The mGluR5s are either not present or not functional on 
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interneurons in control neocortex.  The LTS but not FS interneurons mediate this 

response in both control and PMG cortex, with no change in mGluR1 sensitivity.  This is 

the first demonstration of a change in mGluR in this model, although increased mGluR 

have been shown in dysplastic cortex from epilepsy patients (8; 11; 58). 

The DHPG-induced increase in sIPSC frequency was nearly twice as large in 

PMG as in control cortex when ionotropic glutamate receptors were blocked.  Based on 

current treatment strategies for epilepsy that involve augmentation of GABAergic activity 

in the cortex, we would expect increased inhibition to reduce seizure activity and 

counteract hyperexcitability.  However, increased susceptibility to seizures seen in some 

animal strains has actually been associated with enhanced inhibition (183; 338).  

Furthermore, some antiepileptic drugs have even been shown to exacerbate seizure 

activity, one of them through activation of GABA receptors (196).  In addition, 

interneurons do not contribute equally to inhibitory function, as varying morphologies, 

connectivity, and target domains dictate the type of influence interneurons have in the 

cortex (28; 131; 173; 174).  Whether or not the functional alteration promotes seizure 

activity will likely depend on the type of interneuron that is affected (36; 183).  Our data 

suggest that release of glutamate that reaches extrasynaptic receptors will cause a 

selective increase in LTS interneuron activation.  Activation of LTS neurons through 

group I mGluR has previously been shown to cause synchronous oscillations in 

surrounding neocortical pyramidal neurons (27).  Small changes in the level of mGluR 

activation can also significantly affect thalamocortical rhythms (102).  We hypothesize 

that the increase in mGluR5 function in PMG cortex will increase synchronization of 
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pyramidal neurons under conditions of high levels of excitatory activity and thereby 

actually promote epileptiform activity.  Tests of this hypothesis are currently underway. 

The degree of control of inhibitory neurons exerted by group I mGluRs will 

depend on the overall level of excitation in the neocortex.  In this study, none of the 

group I mGluR antagonists decreased sIPSC frequency in the absence of applied agonists 

for control or PMG (Fig. 5.3), indicating that under these conditions ambient glutamate is 

not sufficient to activate group I mGluRs.  This is most likely due to the fact that 

ionotropic glutamate receptors were blocked for this study, reducing overall levels of 

neuronal activity.  Others have shown that group I mGluRs are active when ionotropic 

glutamate receptors are unblocked (16), suggesting that action potential-driven release of 

glutamate, plentiful in hyperexcitable cortex, is necessary to stimulate the mGluRs.  

Under normal slice conditions, IPSC frequency is decreased after addition of ionotropic 

glutamate blockers.  It was previously shown that the decrease in sIPSC frequency is 

significantly greater in PMG than control cortex (158).  It is possible that this is due to 

not only an increased excitatory drive onto the interneurons, but also the decreased 

activation of the extrasynaptic mGluRs.  Anatomical studies have also suggested that 

excitatory afferents are increased in the PMG (158; 159; 286).  Therefore, mGluRs are 

likely to be even more active in vivo in the malformed cortex.  Interestingly, the sIPSC 

frequency is slightly but significantly lower in PMG compared to control neurons when 

MPEP is included in the bath.  This difference, possibly due to an inverse agonist action 

of MPEP (205; 245), supports the assertion that the observed sIPSC frequency difference 
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in PMG versus control is likely due to the atypical presence of mGluR5s on PMG 

interneurons. 

The mGluR1 antagonist AIDA (300µM) reversed the effect of DHPG, both in 

control and PMG cortex.  This occurred in normal aCSF and when MPEP was included 

in the bath solution, indicating that mGluR1 is sufficient to mediate the response to 

DHPG.  These results are in agreement with previously reported data that show mGluR1 

alone can mediate increased sIPSC frequency in CA1 pyramidal cells following DHPG 

application (207).  Therefore, it is possible that an enhanced mGluR1 response could 

contribute to increased activity in PMG.  However, with mGluR5 blocked, dose-response 

curves for DHPG showed no difference between the control and PMG LTS responses 

(Fig. 5.7).  A left shift in the curve would have indicated increased sensitivity of the 

mGluR1 receptors, while a larger maximum response would have suggested an increased 

number of receptors.  Neither was observed, so it seems unlikely that the higher level of 

activity is due to either of these factors.  As appears to be the case here, mGluR1 and 

mGluR5 are sometimes expressed in the same cell types and even in the same individual 

cells (262; 355).   

In many cases activation of mGluR1 and mGluR5 produce similar responses 

through a similar mechanism (260; 261; 303), suggesting that synergism of their dual 

activation may contribute to the overall effect (327).  In fact, activation of both mGluR1 

and mGluR5 is necessary to mediate DHPG-induced bursting behavior in hippocampus 

(327).  Both mGluR1 and mGluR5 have roles in LTP in the hippocampus (236; 344), as 

well as in neocortical layer V (358).  However, it has been shown that specific 
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mechanisms of action may actually allow them different, if overlapping, roles (365). In 

CA1 pyramidal cells, mGluR1 mediates DHPG-induced depolarization, while mGluR5 

contributes to increased excitability through decreased IAHP and potentiation of the 

NMDA-R response (207).  Also, mGluR5 has been shown to increase the excitability of 

layer V pyramidal cells, specifically by decreasing AHP duration (325).  This is 

particularly relevant, as we have observed decreased AHP duration in PMG LTS 

interneurons (Chapter 2), perhaps caused by the same mechanism.  In hippocampal 

interneurons expressing both receptor subtypes, it is mGluR5 that is responsible for acute 

enhancement of epileptiform bursts, while mGluR1 is necessary to maintain long term 

neuronal excitation (222).  Furthermore, currents specific to each type of receptor show 

differing kinetics in hippocampal interneurons.  Activation of mGluR1 have been shown 

to cause large, fast-rising calcium transients, most likely due to influx of extracellular 

calcium, while activation of mGluR5 caused small, slow-rising calcium transients 

abolished by depletion of internal calcium stores (350).  There is also evidence for a G-

protein-independent mechanism of mGluR1 signaling in hippocampal mossy fiber 

terminals (150).  Both of these receptor types have been implicated in oscillatory 

membrane activity for hippocampus and neocortex (41; 362), but activation of mGluR5 

specifically has been shown to recapitulate the oscillatory activity seen in immature tissue 

(113).  Alternatively, in cholinergic basal ganglia neurons, DHPG application combined 

with mGluR5 blockade uncovered oscillatory activity, apparently driven by mGluR1 and 

dependent on both L-type Ca2+ channels and tyrosine kinase (43).  The roles that each of 
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these subtypes play in oscillations and epileptiform activity in PMG cortex will require 

further investigation. 

Previous findings have demonstrated that LTS cells, but not FS cells, are the 

interneuron subtype activated by DHPG in control cortex (27).  According to 

immunohistochemical analyses, one to five percent of the cells in neocortex contain 

mGluR1 (107), and the mGluR1 immunopositivity is observed in interneurons (256).  

Two separate immunohistochemical studies have shown that in neocortex, mGluR1 

colocalizes with SS (24; 326), found in LTS cells (174), but not PV (326).  Here we have 

shown that the selective functional expression of group I mGluR on LTS interneurons is 

maintained in PMG cortex (Fig. 5.6). This suggests that the expression of these receptors 

develops prior to or is simply impervious to the P1 lesion.  In contrast to this is the 

persistence of mGluR5 expression, possibly representing the maintenance of an immature 

state. The mGlu5 receptors are expressed early in development and decline within layer 

V during the second postnatal week, ultimately reaching a low level in all layers in adult 

cortex (198).  Previous work has characterized malformed cortex as having persistent 

immature qualities that last beyond their typical chronological endpoint (62; 158; 290; 

331).  Some intrinsic properties also lag behind, such as action potential half-width and 

firing frequency (201).   

It is also possible that rather than maintaining a high state that the mGluR5 are 

specifically upregulated, perhaps as a compensatory response to high levels of activity.  

Recent studies have demonstrated that group I mGluRs are aberrantly expressed in tissue 

from individuals with epilepsy and in various epilepsy models.  For example, in patients 
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with intractable temporal lobe epilepsy, upregulation of mGluR5 immunoreactivity in 

hippocampus has been demonstrated (166).  Conversely, following status epilepticus in 

the pilocarpine model of epilepsy, there is a downregulation of mGluR5 mRNA (182).   

In humans with Taylor-type focal cortical dysplasia, an increase in mGluR1 has been 

shown in heterotopic neurons and dysplastic cells, along with an increase in neuronal and 

glial mGluR5 expression (8).  In the kindling model of epilepsy, mGluR1 but not 

mGluR5 transcript was increased in dentate gyrus (40).  Additionally, in a rat model of 

spontaneous seizures, mGluR5 expression was increased in reactive glial cells (10).  

Studies mapping protein levels and functional activation of these receptors to changes in 

cortical activity will be necessary to elucidate whether abnormal mGluR5 function 

contributes to onset of or occurs in response to epileptiform activity.  

Together, the observed increase in sIPSC frequency and the selective activation of 

LTS cells suggest that the effectiveness of vertically projecting interneurons following 

group I mGluR activation with DHPG will be enhanced when glutamate levels are high 

enough to reach extrasynaptic receptors.  Zhou and Hablitz have argued that increased 

excitation, leading to increased glutamate release and mGluR activation, ultimately 

results in increased inhibitory feedback to pyramidal cells (373).  With regard to the data 

presented here, the presence of mGluR5s on LTS interneurons could potentially focus the 

augmented inhibitory feedback into a selective increase in vertical inhibition.  This 

represents a mechanism for promoting synchronous activity between layers and within 

cortical columns, and thereby enabling the initiation of epileptiform activity.  It has 

already been demonstrated that activation of group I mGluRs results in pro-convulsant 
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activity, while specific antagonists to both mGluR1 and mGluR5 have anti-convulsant 

activity in vivo (5; 96; see 229).  Agonists of group I mGluR injected intracerebrally 

cause limbic seizures (347; 348) that can be blocked with mGluR1 antagonists (22; 181).  

DHPG applied in hippocampal slices produce long lasting epileptiform activity (167; 

167; 221; 222).  Antagonists of either mGluR1 or mGluR5 can block induction of this 

epileptiform activity (167). 

Because clinical trials are currently underway to test mGluR5 antagonists in 

patients with Fragile X syndrome, it is likely that we will soon know whether these 

compounds are an effective antiepileptic drug for a neuro-developmental disorder.  Our 

work suggests that they may also be an effective drug for malformation-associated 

epilepsies (69).   
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Table 5.1  Intrinsic properties of layer V pyramidal cells. 

Parameter Control PMG 

Resting membrane potential, 
mV -55.8 ±0.7  (93) -52.4 ±0.8  (83) 

Input resistance, MΩ 111.7 ±6.3  (93) 110.8 ±5.0  (83) 

Time constant (τ), ms  1.8 ±0.05  (93) 1.9 ±0.06  (83) 
tude, 

mV 
Action potential ampli 101.9 ±0.6  (92) 102.1 ±0.5  (82) 

All data are expressed as means ±SEM re were no dif  
control and PMG on any of these measures (t-test, p<0.05). 

  (n cells).  The ferences between
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Figure 5.1  A. Pyramidal cell in layer V of a horizontal slice, imaged using DIC optics.  
Image through two focal planes from dorsal (left) to ventral (right).  Apical dendrite 
apparent in left image (arrow), basal dendrites apparent in right image (arrowheads).  B. 
Sample traces demonstrating that recordings are isolated GABAA currents. B1a. Cell 1, 
recording of sIPSCs in APV and DNQX.  B1b. Recording from the same cell as in 1a, 
during application of 10 µM bicuculline. The sIPSCs are abolished. B2a. Cell 2, 
recording of sIPSCs in APV and DNQX.  B2b. Recording from the same cell as shown in 
2a, following addition of DHPG.  B2c. Recording from the same cell as shown in 2a and 
2b, during application of 10 µM bicuculline.  This demonstrates that sIPSCs induced by 
DHPG are abolished by the GABAA antagonist, bicuculline.   
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Figure 5.2  Effect of DHPG (10 µM) and AIDA (300 µM) on sIPSC frequency and 
amplitude.  A. Sample traces demonstrating that DHPG affected IPSC frequency within 
seconds of application in both control (1) and PMG (2).  DHPG was applied at the 
beginning of the recording.  Files showing onset were not used for further analysis.  B-C. 
Typical traces from analyzed files for one control (B) and one PMG (C) cell.  Traces 
shown are for the following conditions: normal aCSF (B1, C1); local application of 
DHPG (B2, C2); and local application of DHPG + AIDA (B3, C3). D. Mean sIPSC 
frequency before (aCSF) and during application of DHPG or DHPG and AIDA.  For 
control (gray bars): naCSF = 42, nDHPG = 42, nAIDA = 13.  For PMG (black bars):  naCSF = 
31, nDHPG = 31, nAIDA = 11.  * = Student’s t-test with Bonferroni correction, p<0.05.  E. 
Amplitude of Type I events before and during application of DHPG (no significant 
differences).     F. Percent change in sIPSC frequency after DHPG application, calculated 
within individual cells in control (gray bar, n = 42) and PMG (black bar, n = 31) cortex.  
* = Student’s t-test, p<0.05.  G. Percent change in sIPSC frequency after DHPG 
application for individual cells (gray symbols = control, n = 42; black symbols = PMG, n 
= 31).  Circles indicate an increase in frequency, triangles indicate no change or 
decreased frequency.  The “X” represents median for each group with all cells included, 
while the horizontal bar represents median for each group excluding cells indicated by 
triangles that fall below the dashed line.  Even when cells that did not respond are not 
included, there is still a distinct difference in the medians for control and PMG cells.  
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Figure 5.3  Effect of Group I mGluR antagonists in bathing solution.  A-B. Example 
traces showing typical sIPSC recordings for control (A) and PMG (B) in aCSF (A1, B1), 
100 µM AIDA (A2, B2), 300 µM AIDA (A3, B3) and 10 µM MPEP (A4, B4).  C-D. 
Mean sIPSC frequency (C) and amplitude (D) recorded in control (left) and PMG (right) 
cells with either normal aCSF bathing medium, or with the addition of antagonists as 
shown in the bathing medium.  Number of cells for conditions of normal aCSF, 100 µM 
AIDA, 300 µM AIDA, and 10 µM MPEP, respectively are: 42, 15, 10, 26 for control, and 
31, 13, 21, 20 for PMG.  One-way ANOVAs performed for each subject group (control, 
PMG) across bathing conditions, showed that adding antagonists to the bathing medium 
did not change the mean sIPSC frequency or amplitude.  Student’s t-test was performed 
to compare control vs. PMG for each bathing medium condition.  MPEP showed a 
significant difference (p <0.05), all others NS.   
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Figure 5.4 Effect of DHPG on sIPSC frequency with MPEP (10 µM) in bath.  A. 
Mean sIPSC frequency in aCSF with MPEP in the bath, during local application of 10 
µM DHPG application  and during addition of 300 µM AIDA to DHPG local application. 
* = t-test with Bonferroni correction, p <0.05.  B. Percent change in sIPSC frequency 
following addition of DHPG.  There was no significant difference between control and 
PMG cells (t-test, NS).  C. Distribution of individual cell responses for percent change in 
sIPSC frequency following DHPG application. Circles indicate an increase in frequency, 
triangles indicate no change or decreased frequency.  The “X” represents median for each 
group with all cells included, while the horizontal bar represents median for each group 
excluding cells indicated by triangles that fall below the dashed line.  There is little 
difference between control and PMG groups whether or not the possible technical failures 
(triangles) are excluded.  In all cases, control data is shown in gray and PMG in black.  
Data shown is for 26, 22, and 10 control, and 21, 21, and 8 PMG cells, under conditions 
of aCSF, DHPG, and DHPG + AIDA, respectively. 
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Figure 5.5  Effect of DHPG on sIPSC frequency with AIDA (100 µM or 300 µM)  in 
bath.  A-B. Sample traces showing typical sIPSC characteristics for control (A) and 
PMG (B) under the following conditions: (1) aCSF with 100 µM AIDA in the bathing 
medium; (2) same as 1, but during local application of 10 µM DHPG; and (3) during 
addition of 10 µM MPEP to the local perfusate (DHPG also in local perfusate for 3).  C. 
Mean sIPSC frequency for conditions described in 1-3 above (control, gray bars, PMG, 
black bars), with 100 µM AIDA in the bathing medium.  Number of cells recorded for 
these three conditions was 15, 10, and 5 in control and 13, 10, and 7 in PMG cortex.  * = 
t-test with Bonferroni correction, p <0.05.  D. Mean sIPSC frequency for conditions 
described in 1-3 above, with 300 µM AIDA in the bathing medium.  Number of cells 
recorded for these three conditions was 10, 8, and 2 in control and 21, 17, and 13 in PMG 
cortex.  * = t-test with Bonferroni correction, p <0.05.  E-F. Percent change in sIPSC 
frequency following addition of DHPG in bathing conditions of either 100 µM AIDA (E, 
control, n = 9; PMG, n = 10) or 300 µM AIDA (F, control, n = 7; PMG, n = 15).  * = t-
test, p <0.05.  
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Figure 5.6  Effect of CHPG on sIPSC frequency.  A. Change in sIPSC frequency 
following local application of 750 µM CHPG in PMG cortex.  Results shown are for 6 
PMG cells in conditions of normal aCSF, during CHPG application and during the 
addition of the MPEP to the CHPG application.  B. Same as in A, but for control cells.  
MPEP was not applied here because there was no effect of CHPG.  Results shown are for 
5 control cells in conditions of normal aCSF and during CHPG application.  * = t-test, p 
< 0.05.  
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Figure 5.7  Response of FS and LTS interneurons to DHPG application.  A. Example 
LTS interneurons from control (A1) and PMG (A2) cortex.  Firing pattern in response to 
an intracellular depolarizing current pulse (400 msec) is shown at left.  Response to 10 
µM DHPG (local application) shown at right.  Cells depolarized within seconds of DHPG 
application (at beginning of trace).  B.  Example FS interneurons from control (B1) and 
PMG (B2) cortex.  Response to DHPG was a slight membrane depolarization (right). C.  
Example LTS (C1) and FS (C2) cells demonstrating characteristic responses to 100 µM 
DHPG.  The LTS cell depolarized within seconds and then fired action potentials 
following application of DHPG (beginning of trace).  D. Maximal depolarization 
occurring after DHPG application. E. Steady-state depolarization observed after >1 min 
of DHPG application.  There were no significant differences between control and PMG 
cells.  F. Example of membrane oscillations induced in an LTS interneuron. 
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Chapter 6 

General Discussion 

 

For decades, the dogma in epilepsy treatment and research has been that seizures 

are due to increased excitation or decreased inhibition.  Within this framework, and 

despite advances in the diagnosis and treatment of epilepsy, modern medicine has not 

been able to counteract mechanisms of neocortical hyperexcitability for many patients.  

In order to successfully treat patients with intractable seizures, particularly those 

associated with malformations of cortical development, it is necessary to understand all 

the factors that contribute to abnormal cortical function.  Past epilepsy research has 

investigated the role of increased pyramidal cell activity and bursting behavior in both 

hippocampal and neocortical models of epilepsy.  Recent work from this lab has 

demonstrated that increased excitatory input to pyramidal cells occurs in the freeze-lesion 

model of cortical hyperexcitability used for the studies described here.  Of particular 

relevance to the experiments described in this body of work is the fact that the observed 

increase occurs prior to the onset of epileptiform activity, indicating that there are other 

factors involved in controlling or “masking” it (375).  The experiments described here 

focused on the role of neocortical interneurons in epileptogenesis, as several aspects of 

their development reach mature levels around the time epileptiform activity can be 

evoked in this model.  In recent years, increased attention has been focused on the 
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networks of inhibitory cells that are responsible for regulating excitation.  This is because 

the pattern of excitatory output may be as important as the magnitude, with regard to 

abnormal synchrony and seizure activity.  In fact, some studies have shown that 

excitation occurs in the presence of maintained, even enhanced, inhibitory function (206).  

The work presented in this dissertation was performed to increase our understanding of 

the seemingly paradoxical contribution of GABAergic inhibitory cells to neocortical 

hyperexcitability and epileptogenesis.     

A number of the properties responsible for stereotypical characteristics of FS and 

LTS interneurons were evaluated in the preceding chapters.  These two interneuron 

subpopulations form separate networks of electrically interconnected cells, and due to 

their distinct characteristics, it has been suggested that these networks also have separate 

functional roles in the cortex (131).  In addition, morphology indicates that the network 

of vertically extended LTS cells is capable of providing intracolumnar inhibition, while 

horizontally oriented FS cells provide intralaminar inhibition.  Alterations to either 

subtype could affect these specific roles, leading to the overall hypothesis that in PMG 

cortex, increased efficacy of LTS cells and decreased efficacy of FS cells create a 

synchrony-promoting imbalance of neocortical inhibition.  The results presented in the 

preceding chapters suggest that interneuron subtypes are differentially altered in a 

manner that could cause abnormal synchrony in epileptogenic cortex.  Specific findings 

that support this include:  (1) increased firing frequency in PMG LTS cells and a parallel 

decrease in PMG FS cells, (2) increased excitatory input to PMG LTS cells, and (3) 

increased inhibitory output in PMG cortex when LTS cells are selectively activated.   
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As demonstrated in chapter 2, interneuron subtypes can be clearly identified in 

PMG cortex.  This was accomplished using the same classification criteria as in control, a 

critical point, as the significance of altered connectivity depends on the maintenance of 

properties that endow interneuron subtypes with their specific functions.  Intrinsically 

altering these subtypes could change the function of individual cells, as well as the entire 

network to which they belong.  This would make evidence of other types of changes 

difficult to interpret.  Abnormal cell types have been demonstrated in animal models and 

in human cases of epilepsy (62), so defining these interneuron populations for the freeze-

lesion model was necessary to validate these and future studies that intend to exploit the 

differences between them.  In addition to this observation, the findings in chapter 3 

demonstrate that LTS interneurons receive more excitatory input in PMG.  This suggests 

that they may be depolarized to action potential threshold more frequently than their 

control counterparts.  In combination with the fact that PMG LTS interneurons also have 

an increased firing frequency (Chapter 2), these data suggest that LTS interneurons are 

likely excited with greater frequency and to a greater extent in PMG cortex.  As a result, 

the network of LTS cells may exert more powerful inhibition in PMG cortex than in 

control.  In contrast, the input to FS cells does not appear to be altered.  However, the 

results from chapter 2 show a lower action potential firing frequency for FS cells in 

PMG.  This is interesting because decreased PV expression also suggests that there is a 

selective loss of FS cells in this model (288).  The presence of fewer cells, combined with 

a lower firing frequency for the cells that remain, indicates that a decrease in the overall 

efficacy of FS cells is likely.   
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The current working hypothesis based on these data is that (1) increased input and 

excitability enhance LTS output, increasing columnar synchrony, and (2) diminished 

excitability and cell number cause a decrease in FS output, permitting the spread of this 

synchrony to neighboring columns.  Postsynaptically, this mechanism would result in 

more LTS-generated sIPSCs in pyramidal cells, but fewer FS-generated sIPSCs.  

Although it would likely involve complex analysis, the veracity of this hypothesis could 

be assessed on a cellular level by evaluating pyramidal cell sIPSCs.  As has been 

discussed in chapter 1, vertically-oriented LTS cells synapse on the dendrites of their 

post-synaptic targets, while FS cells synapse on the soma.  Somatic and dendritic IPSCs 

can be differentiated from each other with intracellular recordings (81).  Unless the target 

domains of interneuron subtypes are also altered in this model, this would provide a 

means to compare input based on the inhibitory cell type.  An increase in the frequency 

of dendritic events and a comparable decrease in the frequency of somatic events would 

simultaneously support this hypothesis and permit the overall frequency of IPSCs to 

remain unaffected.  IPSC kinetics may be helpful in differentiating the source of IPSCs; 

however, this also reflects synapse location and is not necessarily specific to the 

presynaptic cell type.  For example, increased dendritic inhibition could signify increased 

output from the typical dendrite-targeting cell population, or it may reflect a 

reorganization of inhibitory outputs that previously targeted the soma.  However, were 

this observation to be made in conjunction with the data presented here, it would strongly 

support the presence of increased LTS output.  In PMG cortex, if LTS inhibition is more 

readily activated, the very same inhibitory pattern that is seen in control could be applied 
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to PMG pyramidal cells, only with greater strength.  Following the cessation of this 

powerful inhibition, depolarizing glutamatergic inputs would simultaneously bring the 

previously hyperpolarized cells to threshold potential.  Repetition and magnification of 

this cycle through feedback inhibition would allow this synchronous activity to persist.   

In this study, to assess whether or not the output of LTS interneurons was 

enhanced in PMG cortex, this cell type was selectively activated with a group I mGluR 

agonist, and sIPSCs recorded from pyramidal cells were compared between control and 

PMG.  Perhaps the most important finding discussed in chapter 5 is that the response to 

this activation was twice as large in the PMG cortex.  Further investigation revealed that 

this could be attributed to increased agonist sensitivity, due to mGluR5 activation that 

does not occur in control.  This increased inhibitory output is consistent with the 

increased LTS firing frequency and excitatory input described in chapters 2 and 3.  

Further, the release of extra glutamate in PMG cortex, due in part to an increased number 

of excitatory terminals, may activate mGlu5 receptors on PMG LTS cells.  Although the 

experiments in chapter 5 indicate that the group I mGluRs are not active in response to 

spontaneous glutamate release when ionotropic receptors are blocked, mGluRs have 

demonstrated activity in response to ambient glutamate when the ionotropic receptors are 

not blocked (16).  Interestingly, activation of mGluR5 has also been shown to increase 

firing frequency and decrease AHP duration (325), two effects also seen in PMG LTS 

cells (Chapter 2).  While these data do not definitively establish a causal relationship 

between increased input to and output from LTS, together they makes a strong case for 

the increased efficacy of the LTS population 
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Future experiments that may complement these findings 

These studies reveal functional changes likely to promote epileptogenesis, but an 

even stronger argument for these underlying mechanisms could be made with 

accompanying structural evidence.  Immunohistochemcal results suggest that the 

rearrangement of afferent fibers occurs in this model (159; 286).  Additional studies using 

electron microscopy to look specifically at the number of excitatory synapses on 

interneurons would help clarify the organizational pattern.  It is also possible that not all 

of the relevant changes are reflected anatomically.  For example, if release probability is 

altered but not detected by the methods of this study, a significant increase in the number 

of synapses may not be observed, even at the ultrastructural level.  Despite this, based on 

current immunohistochemical and physiological data, it is probable that this type of study 

would demonstrate an increase in the number of excitatory afferents to some interneurons 

and most pyramidal cells of layer V somatosensory cortex.  

The findings from chapter 5 provide a convincing argument for the presence of 

functional mGluR5s on the PMG LTS interneurons, but several different approaches 

could be taken in order to visually confirm what the physiological data suggest.  As has 

been performed in a number of other models and disease states, in situ hybridization 

could be used to demonstrate upregulation of mGluR5 mRNA.  To establish an estimate 

of whether or not the protein is increased in PMG, a western blot could be used to 

compare levels in control and PMG.  Development of a good mGluR5 antibody to be 

used for immunohistochemistry would also permit visible co-localization of these 

receptors with other LTS cellular markers in PMG.  Visualizing these receptors is 
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important, though, because the possibility remains that mGlu5 receptors are present but 

not functional in control.  Alteration of a single subunit could provide the functionality 

that is exclusively demonstrated in PMG cortex.  This type of information would direct 

future studies, differentiating between the utility of an mGluR5 knockout or a more subtle 

experimental designed to detect the presence of specific subunits.   

To determine whether any or all of these observed changes contribute to cortical 

synchrony, it is necessary to perform experiments at a higher level of organization than 

the single cell.  Field potential recordings are ongoing in the lab to assess whether the 

coordinated activity of LTS interneurons results in synchronous firing within cortical 

columns in the paramicrogyral region.   

 

Translation and Therapeutic Relevance 

Current anti-convulsive treatment for most patients with epilepsy involves the use 

of drugs with varied mechanisms of action, but all of them decrease excitatory cellular 

activity or increase inhibition.  Phenobarbital and benzodiazepines, some of the first 

drugs used to treat seizures, bind the GABAA receptor to prolong or increase the 

frequency of channel opening, respectively.  Several anti-seizure medications target 

specific membrane channels.  For example, pregabalin binds a subunit of voltage-gated 

calcium channels and has effective anticonvulsant activity in electroshock, kindling and 

some chemically-induced seizures (31).  Specific blockade of voltage sensitive sodium 

currents by lamotrigine prevents high-frequency firing, circumventing an excitatory 

overload (216).  Zonisamaide also blocks sodium channels but has demonstrated activity 
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on the T-type calcium current as well (193).  Other mechanisms of anticonvulsant action 

include inhibition of GABA reuptake by tigabine (301) and reduction of IP3-dependent 

calcium release by levetiracetam (57).     

While these drugs have a fairly good success rate for treating some seizures, they 

fail for others.  In addition, polypharmacy is often the only way to effectively limit 

seizure activity in some patients.  When this fails, the only recourse for patients with 

intractable epilepsy may be invasive surgery.  Even when the anti-epileptic drugs are 

effective, side effects may be prohibitive.  Drug interactions may be especially 

problematic for AEDs, as their long-term use is often necessary for enduring remission of 

seizures.  The possibility of using mGluR5 as a target for the development of new 

pharmacotherapy is attractive, because this receptor is not normally expressed at high 

levels in the developed brain.  As a result, antagonism of mGluR5 may not cause the 

extensive side effect profile of some other anticonvulsants. 

In vivo experiments have determined that mGluR5 antagonists have 

anticonvulsant properties.  This may be due to a dampening effect on pyramidal cell 

activity, and therefore has the potential to be at least partially successful in a number of 

models. Based on the observations in this model, an mGluR5 antagonist may also be able 

to decrease activity in one subset of interneurons, potentially counteracting the 

development of synchronous activity.  If this type of mechanism translates to the human 

condition, antagonism of mGluR5 could have a synergistic effect, potentially resulting in 

successful seizure control in this type of epilepsy. 
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